Mark Scheme (Results)

October 2020

Pearson Edexcel International Advanced Level In Core Mathematics C12 (WMA01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code WMA01_01_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 125
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- o.e. - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through. After a misread, however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles.)

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question Number	Scheme			Notes	Marks
1.	$6 x^{3}+5 x^{2}-6 x=0$				
(a)	$x\left(6 x^{2}+5 x-6\right)=0$			For dividing or factorising out the ' x '. This may be awarded for an answer of $x=0$ or for sight of $6 x^{2}+5 x-6$ or $(3 x-2)(2 x+3)$ or attempting to apply the formula or complete the square on $6 x^{2}+5 x-6\{=0\}$	M1
	$\begin{aligned} & \left\{6 x^{2}+5 x-6=0 \text { or } x^{2}+\frac{5}{6} x-1=0 \Rightarrow\right\} \\ & \text { e.g. }(3 x-2)(2 x+3)=0 \Rightarrow x=\ldots \end{aligned}$			dependent on the previous M mark A valid correct method of solving their $3 \mathrm{TQ}=0$ to give $x=\ldots$	dM1
				$x=0, \frac{2}{3},-\frac{3}{2}$ Note: Give A0 for any extra values	A1
					(3)
(b)	$6 \sin ^{3} \theta+5 \sin ^{2} \theta-6 \sin \theta=0 ; 0 \leq \theta<\pi$				
	$\sin \theta=0 \text { or } \sin \theta=\frac{2}{3} \Rightarrow \theta=\ldots$			Finds at least one value of θ for $\sin \theta=($ their k from (a)), $0<k<1$ (where $0<\theta<\pi$) or for finds at least one of $\theta=0$, awrt 0.73 , awrt 2.41 Note: Allow equivalent answers in degrees. E.g. $\theta=$ awrt 41.8, awrt 138	M1
	$\theta=0,0.730,2.41$			For at least two of $\theta=0$, awrt 0.73 or awrt 2.41 Note: Allow equivalent answers in degrees. E.g. $\theta=$ awrt 41.8, awrt 138	A1
				$\theta=0$, awrt 0.730 , awrt 2.41 and no extra values within the range $0 \leq \theta \leq \pi$	A1
	Note: Ignore π or awrt 3.14 for the final A mark				(3)
					6
	Question 1 Notes				
1. (a)	Note	A valid correct attempt of solving their $6 x^{2}+5 x-6=0$ or their $x^{2}+\frac{5}{6} x-1=0$ includes any of - $(3 x-2)(2 x+3)=0 \Rightarrow x=\ldots$ - $\left(x+\frac{5}{12}\right)^{2}-\frac{25}{144}-1=0 \Rightarrow x=\ldots$ - $x=\frac{-5 \pm \sqrt{5^{2}-4(6)(-6)}}{2(6)} \Rightarrow x=\ldots$ - using their calculator to write down at least one correct root for their $3 \mathrm{TQ}=0$			
	Note	Completing the square: Give $2^{\text {nd }} \mathrm{M} 1$ for either $6\left(x \pm \frac{5}{12}\right)^{2} \pm q \pm 6=0 \Rightarrow x=\ldots$ or for $\left(x \pm \frac{5}{12}\right)^{2} \pm q \pm 1=0 \Rightarrow x=\ldots ; q \neq 0$			
	Note	Give M1 dM0 A0 for writing down $x=0, \frac{2}{3},-\frac{3}{2}$ from no working			
	Note	Give M0 dM0 A0 for writing down only $x=\frac{2}{3},-\frac{3}{2}$ from no working			

	Question 1 Notes Continued							
1. (a)	Note	Give M1 dM1 A0 for $\left\{6 x^{3}+5 x^{2}-6 x=0 \Rightarrow\right\} 6 x^{2}+5 x-6=0 \Rightarrow x=\frac{2}{3},-\frac{3}{2}$		$	$		Note	Give M1 dM1 A1 for $\left\{6 x^{3}+5 x^{2}-6 x=0 \Rightarrow\right\} 6 x^{2}+5 x-6=0 \Rightarrow x=0, \frac{2}{3},-\frac{3}{2}$
:---:	:---:	:---						

Question Number		Scheme		Notes	Marks
2.	$\int\left(15 x^{4}+\frac{4}{3 x^{3}}-4\right) \mathrm{d} x ; x>0$				
	$=15\left(\frac{x^{5}}{5}\right)+\frac{4}{3}\left(\frac{x^{-2}}{-2}\right)-4 x+c$		$\begin{array}{r} \text { At least one of either } 15 x^{4} \rightarrow \pm A x^{5}, \\ \frac{4}{3 x^{3}} \rightarrow \pm B x^{-2} \text { or } \pm \frac{B}{x^{2}}, \text { or }-4 \rightarrow-4 x ; A, B \neq 0 \end{array}$		M1
				At least two which can be sim	A1
				At least three which can be simp	A1
	$=3 x^{5}-\frac{2}{3} x^{-2}-4 x+c \text { or } 3 x^{5}-\frac{2}{3 x^{2}}-4 x+c$			Correc contained on th	A1
	Note: $+c$ is counted as an integrated term				
	Question 2 Notes				
	Note	You can ignore subsequent working after a correct final answer.			
	Note	Poor notation (i.e. incorrect use of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or \int) can be condoned for any or all of the marks.			
	Note	+ $+c$ is counted as 'integrated term' for all the A marks.			

Question Number	Scheme		Notes	Marks
3.	$u_{1}=5$	$=k u_{n}+2\left\{\Rightarrow u_{2}=k u_{1}+2, u_{3}=k u_{2}+2\right\}$		
(a)	$u_{2}=5 k+2$		$u_{2}=5 k+2$ or $u_{2}=2+5 k$	B1
	$u_{3}=k(5 k+2)+2$		Substitutes their u_{2} which is in terms of k into $u_{3}=k u_{2}+2$	M1
	$u_{3}=5 k^{2}+2 k+2$		$u_{3}=5 k^{2}+2 k+2$	A1
				(3)
(b) Way 1	$\left\{u_{3}=2 \Rightarrow\right\} 5 k^{2}+2 k+2=2 \Rightarrow k=\ldots \quad\{k=-0.4\}$		Sets their $u_{3}=2$, where u_{3} is a 3TQ in k, and uses a valid method of solving a quadratic equation in k to give $k=\ldots$ Note: Allow M1 if a relevant value of k is subsequently rejected.	M1
	$u_{2}=5("-0.4 ")+2=0 \Rightarrow \sum_{n=1}^{3} u_{n}=5+" 0 "+2$		dependent on the previous M mark Uses their value for k to calculate u_{2} and adds their value for u_{2} to 5 and 2	dM1
		$=7 \quad$ cso	7	A1 cso
	Note: Do not give dM1 for using $u_{2}=2$ (which is found by using $k=0$)			(3)
(b) Way 2	$\left\{u_{3}=2 \Rightarrow\right\} 5 k^{2}+2 k+2=2 \Rightarrow k=\ldots \quad\{k=-0.4\}$		Sets their $u_{3}=2$, where u_{3} is a 3TQ in k, and uses a valid method of solving a quadratic equation in k to give $k=\ldots$ Note: Allow M1 if a relevant value of k is subsequently rejected.	M1
	$\begin{aligned} & u_{2}=\left("-0.4^{\prime \prime}\right)(5)+2=0,\left\{u_{3}=2\right\}, \\ & u_{4}=\left("-0.4^{\prime \prime}\right)(2)+2=1.2 \\ & \sum_{n=1}^{3} u_{n}=\sum_{n=1}^{3}\left(\frac{u_{n+1}-2}{k}\right)=\frac{1}{{ }^{\prime}-0.4^{\prime}}(" 0 "+2+" 1.2 "-6) \end{aligned}$		dependent on the previous M mark Uses their value for k to calculate u_{2} and u_{4} and applies $\left.\frac{1}{\text { their } k} \text { (their } u_{2}+2+\text { their } u_{4}-6\right)$	dM1
		$=7$ cso	7	A1 cso
	Note: Do not give dM1 for using $u_{2}=2$ (which is found by using $k=0$)			(3)
				6
	Question 3 Notes			
3. (a)	Note	Give M0 A0 for $u_{3}=k(5 k+2)$		
(b)	Note	dM1 can also be given for a correct substitution of $k=-0.4$ into $5 k^{2}+7 k+9$ o.e.		
		Give dM1 for $5+5(-0.4)+2+5(-0.4)^{2}+2(-0.4)+2$		
		Give dM1 for $5(-0.4)^{2}+7(-0.4)+9$		
		Give dM0 for $5(-0.4)+7(-0.4)+9\{=4.2\}$. \{This is a common error. $\}$		
	Note	Way 1: Give M1 dM1 A0 for - $5 k^{2}+2 k+2=2 \Rightarrow k(5 k+2)=0 \Rightarrow k=\frac{2}{5} ; u_{2}=5(0.4)+2=4 \Rightarrow \sum_{n=1}^{3} u_{n}=5+" 4 "+2=11$		
	Note	Way 1: Give M1 dM0 A0 for - $5 k^{2}+2 k+2=2 \Rightarrow k(5 k+2)=0 \Rightarrow k=\frac{2}{5} ; u_{2}=5(0.4)+2=4, u_{3}=5(0.4)^{2}+2(0.4)+2=3.6$ $\Rightarrow \sum_{n=1}^{3} u_{n}=5+4+3.6=12.6$ There must be some evidence of using their k to find their value of u_{2}		

	Question 3 Notes Continued		
3. (b)	Note	Give dM0 for an incorrect follow through value of u_{2} from their k with no supporting working.	
	Note	Send to review applying $u_{3}=3$ consistently to give $\sum_{n=1}^{3} u_{n}=$ any of $9-\sqrt{6}, 9+\sqrt{6}$ or awrt 6.55 or awrt 11.4 Otherwise give M0 dM0 A0 for applying $u_{3}=3$	

	Question 4 Notes Continued			
4. (i)	Note	The following solution in powers of 4 can be marked using the same principles as Way 1. $\cdot \frac{8^{y}}{4^{2 x}}=\frac{\sqrt{2}}{32} \Rightarrow \frac{4^{\frac{3}{2} y}}{4^{2 x}}=\frac{4^{\frac{1}{4}}}{4^{\frac{5}{2}}} \Rightarrow 4^{\frac{3}{2} y-2 x}=4^{\frac{1}{4}-\frac{5}{2}} \Rightarrow \frac{3}{2} y-2 x=-\frac{9}{4} \Rightarrow y=\frac{4}{3} x-\frac{3}{2}$ or $y=\frac{1}{6}(8 x-9)$		
	Note	Give M0 A0 dM0 A0 for $y=\log _{8}\left(\frac{4^{2 x}}{32}\right.$	or $y=\frac{\log \left(\frac{\sqrt{2}}{32} 4^{2 x}\right)}{\log 8}$	
4. (ii)	Note	Exact equivalent forms of $x=2 \sqrt{6}+2 \sqrt{2}$ include $x=2 \sqrt{2}+2 \sqrt{6}, x=\sqrt{24}+\sqrt{8}$, $x=2 \sqrt{6}+\sqrt{8}, x=\sqrt{24}+2 \sqrt{2}$, etc. for the final A mark.		
	Note	Give - M0 A0 dM0 A0 for $x \sqrt{3}-x=4 \sqrt{2} \rightarrow x=2 \sqrt{6}+2 \sqrt{2}$ - M1 A0 dM0 A0 for $x(\sqrt{3}-1)=4 \sqrt{2} \rightarrow x=2 \sqrt{6}+2 \sqrt{2}$ - (M1 A1) dM0 A0 for $x=\frac{4 \sqrt{2}}{\sqrt{3}-1} \rightarrow x=2 \sqrt{6}+2 \sqrt{2}$ - (M1 A1) dM1 A1 for $x=\frac{4 \sqrt{2}}{\sqrt{3}-1} \rightarrow x=\frac{4 \sqrt{6}+4 \sqrt{2}}{2} \Rightarrow x=2 \sqrt{6}+2 \sqrt{2}$ - (M1 A1 dM1) A1 for $x=\frac{4 \sqrt{2}}{(\sqrt{3}-1)} \cdot \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)} \rightarrow x=2 \sqrt{6}+2 \sqrt{2}$ with no intermediate working.		
Question Number	Scheme		Notes	Marks
4.	(ii) $x \sqrt{3}=4 \sqrt{2}+x$			
(ii) Way 2	$\begin{aligned} & (x \sqrt{3})^{2}=(4 \sqrt{2}+x)^{2} \\ & 3 x^{2}=32+4 \sqrt{2} x+4 \sqrt{2} x+x^{2} \\ & \text { e.g. } \quad 2 x^{2}=8 \sqrt{2} x+32 \\ & \text { or } \quad x^{2}=4 \sqrt{2} x+16 \\ & \text { or } 2 x^{2}-8 \sqrt{2} x-32=0 \\ & \text { or } \quad x^{2}-4 \sqrt{2} x-16=0 \end{aligned}$		Squares both sides, followed by an attempt to form a 3-term quadratic.	M1
			A correct 3-term quadratic. Note: $2 x^{2}-8 \sqrt{2} x=32$ or $x^{2}-4 \sqrt{2} x-16\{=0\}$ are acceptable for this mark.	A1
	$\begin{aligned} & \text { e.g. } x=\frac{4 \sqrt{2} \pm \sqrt{32-4(1)(-16)}}{2} \\ & \text { or } \quad(x-(\sqrt{8}+\sqrt{24}))(x-(\sqrt{8}+\sqrt{24}))=0 \Rightarrow x=\ldots \\ & \text { or } \quad(x-2 \sqrt{2})^{2}-8-16=0 \Rightarrow x=\ldots \\ & x=2 \sqrt{2}+2 \sqrt{6} \text { or } x=\sqrt{24}+2 \sqrt{2} \text { o.e. cso } \end{aligned}$		dependent on the previous M mark Correct method (applying the quadratic formula, factorising or completing the square) for solving a $3 \mathrm{TQ}=0$ to find $x=\ldots$	dM1
			$x=2 \sqrt{6}+2 \sqrt{2}$ or equivalent	A1 cso
				(4)
	Question 4 Notes			
4. (ii) Way 2	Note	The 3-term quadratic must involve surds for the $1^{\text {st }} \mathrm{M}$ mark.		
	Note	The 3-term quadratic must involve surds for the $1^{\text {st }} \mathrm{A}$ mark.		
	Note	Give $2^{\text {nd }} \mathrm{A} 0$ for giving more than one answer for x as their final answer.		
	Note	Give - M0 A0 dM0 A0 for $x \sqrt{3}-x=4 \sqrt{2} \rightarrow x=2 \sqrt{6}+2 \sqrt{2}$ - (M1 A1) dM0 A0 for $2 x^{2}=8 \sqrt{2} x+32 \rightarrow x=2 \sqrt{6}+2 \sqrt{2}$ - (M1 A1) dM0 A0 for $x^{2}-4 \sqrt{2} x-16=0 \rightarrow x=2 \sqrt{6}+2 \sqrt{2}$		

Question Number	Scheme	Notes	Marks
5. (a)(i) Way 2	$\begin{aligned} & \left\{\int_{4}^{a} \frac{4}{\sqrt{3 x}} \mathrm{~d} x=\frac{1}{\sqrt{3}} \int_{4}^{a} \frac{4}{\sqrt{x}} \mathrm{~d} x=\frac{1}{\sqrt{3}}\left[8 x^{\frac{1}{2}}\right]_{4}^{\frac{625}{64}}\right\} \\ & =\frac{8}{\sqrt{3}}\left(\sqrt{\frac{625}{64}}-\sqrt{4}\right) \end{aligned}$	dependent on gaining both M marks in (b) and their $a>4$ or their $\sqrt{a}>2$ $\text { For } \frac{8}{\sqrt{3}}(\sqrt{(\text { their } a)}-\sqrt{4})$	dM1
	$=\frac{8}{\sqrt{3}}\left(\frac{25}{8}-2\right)=\frac{8}{\sqrt{3}}\left(\frac{9}{8}\right)=3 \sqrt{3}$	$3 \sqrt{3}$. Condone $\sqrt{27}$	A1
			(2)
(a)(i) Way 3	$\left\{\int_{4}^{a} \frac{4}{\sqrt{3 x}} \mathrm{~d} x=\int_{4}^{a} 4(3 x)^{-\frac{1}{2}} \mathrm{~d} x=\left[\frac{8}{3}(3 x)^{\frac{1}{2}}\right]_{4}^{\frac{625}{64}}\right\}$	dependent on gaining both M marks in (b) and their $a>4$ or their $\sqrt{a}>2$$\begin{aligned} \text { For } \begin{array}{l} \frac{8}{3} \\ (\sqrt{(3)(\text { their } a)}-\sqrt{(3)(4)}) \\ \\ \text { or } \frac{8}{\sqrt{3}}(\sqrt{(\text { their } a)}-\sqrt{4}) \end{array} \end{aligned}$	dM1
	$=\frac{8}{3}\left(\sqrt{(3)\left(\frac{625}{64}\right)}-\sqrt{(3)(4)}\right)$ or $\frac{8}{\sqrt{3}}\left(\sqrt{\frac{625}{64}}-\sqrt{4}\right)$		
	$=\frac{8}{\sqrt{3}}\left(\frac{25}{8} \sqrt{3}-2 \sqrt{3}\right)=\frac{8}{3}\left(\frac{9}{8} \sqrt{3}\right)=3 \sqrt{3}$	$3 \sqrt{3}$. Condone $\sqrt{27}$	A1
			(2)
(a)(ii) Way 2	$\left\{\int_{1}^{a} \frac{4}{\sqrt{x}} \mathrm{~d} x=\int_{1}^{\frac{625}{64}} \frac{4}{\sqrt{x}} \mathrm{~d} x\right\}$		
	$\begin{aligned} & =\left[\frac{4 x^{\frac{1}{2}}}{\frac{1}{2}}\right]_{1}^{\frac{625}{64}} \\ & \text { Note: L } \\ & =\left[8 x^{\frac{1}{2}}\right]_{1}^{\frac{625}{64}}=8 \sqrt{\frac{625}{64}}-8 \sqrt{1}=25-8 \end{aligned}$	Integrates so that $\frac{4}{\sqrt{x}} \rightarrow k x^{\frac{1}{2}} ; k \neq 0$, is seen anywhere in Q5. Also allow M1 for integrating so that $\frac{4}{\sqrt{3 x}} \rightarrow k x^{\frac{1}{2}} ; k \neq 0$ is seen anywhere in Q5.	M1
		dependent on the previous M mark, dependent on gaining both M marks in (b) and their $a>4$ or their $\sqrt{a}>2$ $\text { For }\left[k x^{\frac{1}{2}}\right]_{1}^{\text {their stated } a} \quad ; k \neq 0$ do not need to be applied for this mark .	dM1
	$=17$	17	A1
			(3)
	Question 5 Notes Continued		
5. (b)	Note Give M0 A0 dM0 A0 for setting their •E.g. Give M0 A0 dM0 A0 for $\frac{8}{\sqrt{3}}$	(a)(i) answer (which is in terms of a) equ $(\sqrt{a}-\sqrt{4})=9$ seen in part (b).	$\text { al to } 9 .$

$\begin{array}{c}\text { Question } \\ \text { Number }\end{array}$	Scheme	Notes	Marks
6.	(a) $y=x(x+3)(x-2) ;$ (b) $\frac{\mathrm{d} y}{\mathrm{~d} x} \geq 2$		

	Question 6 Notes Continued	
6. (b)	Note	The critical values found from solving $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+2 x-6=0$ are $x=\frac{-2 \pm \sqrt{76}}{6}$ $x=\frac{-1 \pm \sqrt{19}}{3}$ or $x=-1.78629 \ldots, 1.1196 \ldots$

Question Number	Scheme	Notes	Marks
7.	(i) $3 \times\left(\frac{1}{2}\right)^{p-1}=1.3$; (ii) $\log _{4} 2 x+2 \log _{4} x=8$		
(i) Way 1	$\left(\frac{1}{2}\right)^{p-1}=\frac{1.3}{3} \quad\left\{\right.$ or $\left.2^{p-1}=\frac{3}{1.3}\right\}$		M1
	$\log \left(\frac{1}{2}\right)^{p-1}=\log \left(\frac{1.3}{3}\right) \Rightarrow(p-1) \log \left(\frac{1}{2}\right)=\log \left(\frac{1.3}{3}\right) \Rightarrow p-1=\frac{\log \left(\frac{1.3}{3}\right)}{\log \left(\frac{1}{2}\right)}$		M1
	$p=\frac{\log \left(\frac{1.3}{3}\right)}{\log \left(\frac{1}{2}\right)}+1 \Rightarrow p=\text { awrt } 2.206\{\Rightarrow p=2.206(3 \mathrm{dp})\}$		A1
			(3)
(i) Way 2	$\log \left(3 \times\left(\frac{1}{2}\right)^{p-1}\right)=\log 1.3$		M1
	$\log 3+\log \left(\frac{1}{2}\right)^{p-1}=\log 1.3 \Rightarrow \log 3+(p-1) \log \left(\frac{1}{2}\right)=\log 1.3 \Rightarrow p-1=\frac{\log 1.3-\log 3}{\log \left(\frac{1}{2}\right)}$		M1
	$p=\frac{\log 1.3-\log 3}{\log \left(\frac{1}{2}\right)}+1 \Rightarrow p=\text { awrt } 2.206\{\Rightarrow p=2.206(3 \mathrm{dp})\}$		A1
			(3)
(i) Way 3	$\begin{gathered} 3\left(\frac{1}{2}\right)^{p}\left(\frac{1}{2}\right)^{-1}=1.3 \Rightarrow 3(2)\left(\frac{1}{2}\right)^{p}=1.3 \Rightarrow\left(\frac{1}{2}\right)^{p}=\frac{1.3}{6} \quad\left\{\text { or } 2^{p}=\frac{6}{1.3}\right. \\ \log \left(\frac{1}{2}\right)^{p}=\log \left(\frac{1.3}{6}\right) \Rightarrow p \log \left(\frac{1}{2}\right)=\log \left(\frac{1.3}{6}\right) \Rightarrow p=\frac{\log \left(\frac{1.3}{6}\right)}{\log \left(\frac{1}{2}\right)} \end{gathered}$		M1
			M1
	$p=\text { awrt } 2.206\{\Rightarrow p=2.206(3 \mathrm{dp})\}$		A1
			(3)
(i) Notes	Way 1, Way 2, Way 3 and Way 4 (on next page)		
	For correctly making $\left(\frac{1}{2}\right)^{p-1}, 2^{p-1},\left(\frac{1}{2}\right)^{p}$ or 2^{p} the subject or for writing a correct equation involving logarithms.		M1
	Complete process of writing a correct equation involving logarithms and using correct log laws (and correct index laws, where appropriate) to make $p-1$ or p the subject.		M1
	$p=$ awrt 2.206		A1
	Note: See next page for how to mark Special Case M1 M0 A0		(3)
(ii)	$\log _{4} 2 x+\log _{4} x^{2}=8 \Rightarrow \log _{4}\left(2 x\left(x^{2}\right)\right)=8$	Correct method for combining the log terms. $\begin{aligned} & \log _{4} 2 x+2 \log _{4} x \rightarrow \log _{4}\left(2 x\left(x^{2}\right)\right) \\ & \text { Condone } \log _{4} 2 x+2 \log _{4} x \rightarrow \log \left(2 x\left(x^{2}\right)\right) \\ & \hline \end{aligned}$	M1
	$2 x^{3}=4^{8} \quad\left\{\Rightarrow 2 x^{3}=65536\right\}$	$\begin{array}{r} \log _{4}\left(a x^{n}\right)=8 \Rightarrow a x^{n}=4^{8} \text { or } 2^{16} \text { or } 65536, \\ \text { where } a x^{n}=2 x^{3}, 4 x^{4} \text { or } 2 x^{2} \text { only } \end{array}$	M1
	$x^{3}=32768 \Rightarrow x=(32768)^{\frac{1}{3}} \Rightarrow x=32$	$x=32$	A1
			(3) 6

	Question 7 Notes	
7. (ii)	Note	Give M1 M1 A1 \{for using a calculator to write down\} $x=32$ from no working
	Note	Give M1 M1 A1 for correct work leading to $x=32$. E.g. - give M1 M1 A1 for $\log _{4} 2 x+\log _{4} x^{2}=8 \Rightarrow x=32$ - give M1 M1 A1 for $\log _{4} 2 x+\log _{4} x^{2}=8 \Rightarrow \log _{4}\left(2 x^{3}\right)=8 \Rightarrow x=32$ with no intermediate working.
	Note	Give M0 M1 A0 for $\log _{4} 2 x+2 \log _{4} x=8 \Rightarrow \log _{4} 2 x^{2}=8 \Rightarrow 2 x^{2}=65536 \Rightarrow x=128 \sqrt{2}$
	Note	Give M0 M1 (implied) A0 for $\log _{4} 2 x+2 \log _{4} x=8 \Rightarrow \log _{4} 2 x^{2}=8 \Rightarrow x=128 \sqrt{2}$
	Note	Give M0 M0 A0 for $\log _{4} 2 x+2 \log _{4} x=8 \Rightarrow \log _{4} 2 x^{2}=4 \Rightarrow x=8 \sqrt{2}$
	Note	Give A0 for $x= \pm 32$ unless recovered
	Note	Allow final A1 for (incorrect notation recovered) $x^{3}=32768 \Rightarrow x=\sqrt{32768} \Rightarrow x=32$
	Note	Give M0 M1 A0 for $\log _{4} 2 x+2 \log _{4} x=8 \Rightarrow\left(\log _{4} 2 x\right)\left(\log _{4} x^{2}\right)=8 \Rightarrow \log _{4} 2 x^{3}=8 \Rightarrow x=32$

Question Number	Scheme			Notes	Marks
9.	(a) $y=\frac{2}{x}+k ; k>0$ (b) $y=5-3 x, l$ and C do not meet				
(b) Way 2	$\left\{\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{2}{x}+k\right)=-3 \Rightarrow\right\}-\frac{2}{x^{2}}=-3$		Differentiates $y=\frac{2}{x}+k$ to give $\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm A x^{-2}$; $A \neq 0$, and sets the result equal to -3		M1
	$\left\{x^{2}=\frac{2}{3} \Rightarrow\right\} x= \pm \sqrt{\frac{2}{3}}$		$x= \pm \sqrt{\frac{2}{3}} \text { or } x= \pm \text { awrt } 0.82 \text { or } x= \pm \frac{1}{3} \sqrt{6}$		A1
	$\begin{aligned} & \left\{\frac{2}{x}+k=5-3 x, x=\sqrt{\frac{2}{3}},-\sqrt{\frac{2}{3}} \Rightarrow\right\} \\ & \text { Either } \quad \frac{2}{\sqrt{\frac{2}{3}}}+k=5-3\left(\sqrt{\frac{2}{3}}\right) \\ & \text { or } \quad \frac{2}{-\sqrt{\frac{2}{3}}}+k=5-3\left(-\sqrt{\frac{2}{3}}\right) \end{aligned}$		Substitutes at least one of their x, (which has been found from solving $\pm A x^{-2}=-3$), into the equation $\frac{2}{x}+k=5-3 x$		M1
	$k=5-2 \sqrt{6}, 5+2 \sqrt{6}$ or $k=$ awrt $0.1 \ldots$, awrt 9.9 $5-2 \sqrt{6}<k<5+2 \sqrt{6}$		dependent on the previous M mark Uses a complete method to find both critical values for k and writes down an inside region with both critical values for k.		dM1
			$5-2 \sqrt{6}<k<5+2 \sqrt{6}$ or exact equivalent.		A1
					(5)
	Question 9 Notes Continued				
9. (b)	Note	For the final A mark accept exact equivalents such as $\frac{10-\sqrt{96}}{2}<k<\frac{10+\sqrt{96}}{2}$; $k>5-2 \sqrt{6}$ and $k<5+2 \sqrt{6}$.			
	Note	Give final dM0 A0 (unless recovered) for $k>5-2 \sqrt{6}$ or $k<5+2 \sqrt{6}$; $k>5-2 \sqrt{6}, k<5+2 \sqrt{6}$			
	Note	Give final dM1 A0 (unless recovered) for $5-2 \sqrt{6}<x<5+2 \sqrt{6}$, o.e.			
	Note	$3 x^{2}+k x-5 x+2=0$ by itself is $1^{\text {st }} \mathrm{A} 0$, but $3 x^{2}+k x-5 x+2=0$ followed by $(k-5)^{2}-4(3)(2)$ is final $1^{\text {st }} \mathrm{A} 1$ (implied), $2^{\text {nd }} \mathrm{M} 1$			

	Question 10 Notes	
10. (a)$\text { Way } 1$	B1	Constant term of 2^{9} or 512. Do not allow B1 for $512 x^{0}$ unless simplified to 2^{9} or 512.
	$1^{\text {st }}$ M1	$\left({ }^{9} C_{1}\right)(\ldots)(x) \text { or }\left({ }^{9} C_{2}\right)(\ldots)\left(x^{2}\right) \text { or }\left({ }^{9} C_{3}\right)(\ldots)\left(x^{3}\right) .$ Requires correct binomial coefficient in any form with the correct power of \boldsymbol{x}, but the other part of the coefficient may be wrong or missing.
	$\mathbf{1 s t}^{\text {st }}$ A1	At least two correct terms from ${ }^{9} C_{1}(2)^{8}\left(-\frac{1}{3} x\right)+{ }^{9} C_{2}(2)^{7}\left(-\frac{1}{3} x\right)^{2}+{ }^{9} C_{2}(2)^{6}\left(-\frac{1}{3} x\right)^{3}$, or equivalent, which can be un-simplified or simplified.
	Note	${ }^{9} C_{1}(2)^{8}-\frac{1}{3} x+{ }^{9} C_{2}(2)^{7}-\frac{1}{3} x^{2}+{ }^{9} C_{2}(2)^{6}-\frac{1}{3} x^{3}+. .\{$ bad bracketing \} scores M0 unless later work implies a correct method.
	Note	The common error $2^{9}+{ }^{9} C_{1}(2)^{8}\left(-\frac{1}{3} x\right)+{ }^{9} C_{2}(2)^{7}\left(-\frac{1}{3} x^{2}\right)+{ }^{9} C_{3}(2)^{6}\left(-\frac{1}{3} x^{3}\right)$ $512-768 x+1536 x^{2}-1792 x^{3}$ is B1 M1 A0 A1 A0
	Note	The common error ${ }^{9} C_{1}(2)^{8}\left(\frac{1}{3} x\right)+{ }^{9} C_{2}(2)^{7}\left(\frac{1}{3} x\right)^{2}+{ }^{9} C_{3}(2)^{6}\left(\frac{1}{3} x\right)^{3}$ $512+768 x+562 x^{2}+\frac{1792}{9} x^{3}$ is B1 M1 A0 A1 A0
	Note	$2^{9}+{ }^{9} C_{8}(2)^{8}\left(-\frac{1}{3} x\right)+{ }^{9} C_{7}(2)^{7}\left(-\frac{1}{3} x\right)^{2}+{ }^{9} C_{6}(2)^{6}\left(-\frac{1}{3} x\right)^{3}+\ldots$ is also a correct expansion.
(a) Way 2	B1	$2^{9}(1 \pm \ldots)$ or $512(1 \pm \ldots)$. Award when first seen.
	$\mathbf{1 s}^{\text {st }}$ M1	Expands $(1 \pm k x)^{9} ; k \neq \pm \frac{1}{3}$ to give either $\left({ }^{9} C_{1}\right)(\ldots)(x)$ or $\left({ }^{9} C_{2}\right)(\ldots)\left(x^{2}\right)$ or $\left({ }^{9} C_{3}\right)(\ldots)\left(x^{3}\right)$. Requires correct binomial coefficient in any form with the correct power of \boldsymbol{x}, but the other part of the coefficient may be wrong or missing.
	$\mathbf{1 s t}^{\text {st }}$ A1	At least two correct terms from ${ }^{9} C_{1}\left(-\frac{1}{6} x\right)+{ }^{9} C_{2}\left(-\frac{1}{6} x\right)^{2}+{ }^{9} C_{3}\left(-\frac{1}{6} x\right)^{3}$ or $-\frac{3}{2} x+x^{2}-\frac{7}{18} x^{3}$, or equivalent, which can be un-simplified or simplified.
	SC	Allow Special Case B1 M1 A1 for Way 2: $K\left(1+{ }^{9} C_{1}\left(-\frac{1}{6} x\right)+{ }^{9} C_{2}\left(-\frac{1}{6} x\right)^{2}+{ }^{9} C_{3}\left(-\frac{1}{6} x\right)^{3}\right)$ or $K\left(1-\frac{3}{2} x+x^{2}-\frac{7}{18} x^{3}\right)$ where $K \neq 2^{9}$ or $K \neq 512$
	Note	$2\left(1+{ }^{9} C_{1}\left(-\frac{1}{6} x\right)+{ }^{9} C_{2}\left(-\frac{1}{6} x\right)^{2}+{ }^{9} C_{3}\left(-\frac{1}{6} x\right)^{3}+\ldots\right)$ would get SC B1 M1 A1 A 0 A 0
(a)	Note	E.g. $\binom{9}{3}$ or $\frac{9(8)(7)}{3!}$ or $\frac{9!}{3!6!}$ or 84 or even $\left(\frac{9}{3}\right)$ can be written in place of ${ }^{9} C_{3}$
	Note	Condone giving the final A mark for a 'simplified' $512+-768 x+512 x^{2}+-\frac{1792}{9} x^{3}$.
	Note	$\begin{aligned} & -\frac{1792}{9} x^{3} \text { may be written as either }-199 \frac{1}{9} x^{3} \text { or }-199.1 x^{3} \text { but do not allow }-199.1 x^{3} \\ & \text { or }-199 x^{3} \end{aligned}$
	Note	Condone terms in reverse order $-\frac{1792}{9} x^{3}+512 x^{2}-768 x+512$ for B1 M1 A1 A1 A1.

	Question 10 Notes Continued		
10. (a)	Note	The terms may be "listed" rather than added for any of the first 4 marks.	
	Note	Any higher order terms can be ignored in part (a).	
	SC	Special Case: If a candidate expands in descending powers of x, $\text { i.e. } \begin{aligned} \left\{\left(2-\frac{1}{3} x\right)^{9}\right\} & =\left(-\frac{1}{3} x\right)^{9}+{ }^{9} C_{1}(2)^{1}\left(-\frac{1}{3} x\right)^{8}+{ }^{9} C_{2}(2)^{2}\left(-\frac{1}{3} x\right)^{7}+{ }^{9} C_{3}(2)^{3}\left(-\frac{1}{3} x\right)^{6} \\ & =-\frac{1}{19683} x^{9}+(9)(2)\left(\frac{1}{6561} x^{8}\right)+(36)(4)\left(-\frac{1}{2187} x^{7}\right)+(84)(8)\left(\frac{1}{729} x^{6}\right) \\ & =-\frac{1}{19683} x^{9}+\frac{2}{729} x^{8}-\frac{16}{243} x^{7}+\frac{224}{243} x^{6} \end{aligned}$ then they can gain SC: B1 M1 A1 A0 A0	
		B1	For a simplified $-\frac{1}{19683} x^{9}$
		M1:	$\begin{aligned} & \left({ }^{9} C_{1}\right)(\ldots)\left(x^{8}\right) \text { or }\left({ }^{9} C_{2}\right)(\ldots)\left(x^{7}\right) \text { or }\left({ }^{9} C_{3}\right)(\ldots)\left(x^{6}\right) \\ & \text { or }\left({ }^{9} C_{8}\right)(\ldots)\left(x^{8}\right) \text { or }\left({ }^{9} C_{7}\right)(\ldots)\left(x^{7}\right) \text { or }\left({ }^{9} C_{6}\right)(\ldots)\left(x^{6}\right) \end{aligned}$
		$1^{\text {st }}$ A1:	At least two correct terms from ${ }^{9} C_{1}(2)^{1}\left(-\frac{1}{3} x\right)^{8}+{ }^{9} C_{2}(2)^{2}\left(-\frac{1}{3} x\right)^{7}+{ }^{9} C_{3}(2)^{3}\left(-\frac{1}{3} x\right)^{6}$ which can be un-simplified or simplified.
10. (b)	Note	Give $1^{\text {st }} \mathrm{M} 0$ (unless recovered) for any extra x terms in their expansion of $\mathrm{f}(x)$ or for any additional x terms in $\pm 3\left(^{\prime} 768^{\prime}\right) x \pm{ }^{\prime} 512^{\prime} a x$ or for any additional terms in $\pm 3\left(' 768^{\prime}\right) \pm{ }^{\prime} 512^{\prime} a$.	
	Note	Give M1 dM1 for $\pm 3\left(^{\prime} 768^{\prime}\right) x \pm{ }^{\prime} 512^{\prime} a x \Rightarrow a=\ldots$ or for $\pm 3\left(^{\prime} 768^{\prime}\right) \pm{ }^{\prime} 512^{\prime} a=0 \Rightarrow a=\ldots$	
	Note	Valid solutions include $2^{9} a-9\left(2^{8}\right)=0$ or $\frac{36\left(2^{7}\right)}{9} a-\frac{(3)(9)\left(2^{8}\right)}{3}=0 \Rightarrow a=\frac{9}{2}$	
	Note	Allow $1^{\text {st }} \mathrm{M} 1$ for $3(-768 x)+\frac{a}{x}\left(512 x^{2}\right)=0$ or $0 x$	
	Note	M1 dM1 A1 can be given for $K\left(1+{ }^{9} C_{1}\left(-\frac{1}{6} x\right)+{ }^{9} C_{2}\left(-\frac{1}{6} x\right)^{2}+\ldots\right)$ where $K \neq 2^{9}$ or $K \neq 512$ leading to $a=\frac{9}{2}$ in $\mathrm{Q} 10(\mathrm{~b})$. E.g. $K=\frac{1}{512}$ gives $\frac{a}{512}-\frac{3(3)}{1024}=0 \Rightarrow a=\frac{9}{2}$	

Question Number	Scheme			Notes	Marks
11.	$\mathrm{f}(x)=13+3 x+(x+2)(x+k)^{2}$; given $(x+3)$ is a factor of $\mathrm{f}(x)$				
(a)(i),(ii)	$\mathrm{f}(-3)=13+3(-3)+(-3+2)(-3+k)^{2}=0$	Applies $f(\pm 3)$ to obtain an expression in k only and sets their expression equal to 0			M1
	$\begin{array}{l\|l} (-3+k)^{2}=4 & 4-\left(k^{2}-6 k+9\right)=0 \end{array}$	dependent on the previous M mark Correct valid method for solving their quadratic in k to give at least one value of $k=$...			dM1
	$\begin{array}{l\|c} k=5,1 & (k-5)(k-1)=0 \\ & k=5,1 \\ \hline \end{array}$	Correct method for finding $k=5$ (answer is given) and finds $k=1$			A1
					(3)
(a) (i) Alt	$\{x=-3, k=5 \Rightarrow\}$	Use this Alt method for $1^{\text {st }}$ M1 only			
	$\begin{gathered} \mathrm{f}(-3)=13+3(-3)+(-3+2)(-3+5)^{2} \\ \{=13-9-4\}=0 \quad \Rightarrow k=5 \end{gathered}$	Uses $x=-3, k=5$ to correctly show that $\mathrm{f}(-3)=0$ and concludes that $k=5$			M1
					(1)
(b) (i)	$\begin{aligned} \mathrm{f}(x) & =13+3 x+(x+2)(x+5)^{2} \\ & =13+3 x+(x+2)\left(x^{2}+10 x+25\right) \\ & =13+3 x+x^{3}+10 x^{2}+25 x+2 x^{2}+20 x+50 \\ & =x^{3}+12 x^{2}+48 x+63 \end{aligned}$	Attempts to multiply out $\mathrm{f}(x)$ with $k=5$ to give a 4-term cubic of the form$\begin{array}{r} \pm A x^{3} \pm B x^{2} \pm C x \pm D ; \\ A, B, C, D \neq 0 \end{array}$			M1
				+12 $x^{2}+48 x+63$	A1
	Hence $\mathrm{f}(x)=(x+3)\left(x^{2}+9 x+21\right)$	ses their simplified cubic and $(x+3)$ in an attempt to find the quadratic factor. g. Attempts to divide by $(x+3)$ using long division to give $x^{2} \pm k x+\ldots, k=$ value $\neq 0$ factorising/equating coefficients to obtain $+3)\left(x^{2} \pm k x \pm c\right), k=$ value $\neq 0, c$ can be 0			M1
		$(x+3)\left(x^{2}+9 x+21\right)$ seen on one line			A1
	Note: Give final M0 for attempting to divide by $(x-3)$ Note: Give final M0 for factorising/equating coefficients to give $(x-3)\left(x^{2} \pm k x \pm c\right)$ Note: You can recover work for (b)(i) in (b)(ii)				(4)
(b)(ii) Way 1	$\left\{b^{2}-4 a c=\right\} 9^{2}-4(1)(21)$	Applies $b^{2}-4 a c$ on their $" x^{2}+9 x+21$ " where $a, b, c \neq 0$. This could be part of the quadratic formula (i.e. the $b^{2}-4 a c$ part) or embedded in $b^{2}<4 a c$.			M1
	e.g. $b^{2}-4 a c=-3<0 \Rightarrow$ no solution and so $x=-3$		Finds $b^{2}-4 a c=-3$,states $-3<0 \Rightarrow$ no solutionand either $x=-3$ or onlysolution comes from $x+3=0$		A1 cso
	e.g. $b^{2}-4 a c=-3<0 \Rightarrow$ no solution and the only solution comes from $x+3=0$				
	Note: Give A0 for stating ' $(x+3)$ is the only solution'. Note: If they refer to the solution of $x=-3$ it must be correct (not e.g. $x=3$) for A1 cso Note: Give A0 for $b^{2}-4 a c=-3<0 \Rightarrow$ no solution and $x^{2}+9 x+21<0 \Rightarrow x=-3$ Note: $x=-3$ must clearly be a part of their solution for A1 Note: The solution $x=-3$ must be referred to in (b)(ii)				(2)
					9

Question Number		Scheme	Notes	Marks
$\begin{aligned} & \text { 11. (ii)(b) } \\ & \text { Way } 2 \end{aligned}$	$\begin{aligned} & \left\{\left(x^{2}+9 x+21\right)=0 \Rightarrow\right\} \\ & \left(x+\frac{9}{2}\right)^{2}-\frac{81}{4}+21=0 \\ & \left(x+\frac{9}{2}\right)^{2}=-\frac{3}{4} \text { or } x+\frac{9}{2}= \pm \sqrt{-\frac{3}{4}} \end{aligned}$		Completes the square on their " $x^{2}+b x+c$ " where $b, c \neq 0$ to make $\left(x+\frac{b}{2}\right)^{2}$ or $\left(x+\frac{b}{2}\right)$ the subject.	M1
	e.g. \{Quadratic \} has no solutions and so the only solution comes from $x+3=0$		$\begin{gathered} \left(x+\frac{9}{2}\right)^{2}=-\frac{3}{4} \\ \text { or } x+\frac{9}{2}= \pm \sqrt{-\frac{3}{4}} \\ \text { or } x+\frac{9}{2}=\sqrt{-\frac{3}{4}} \end{gathered}$ \Rightarrow no solution (or maths error) and either $x=-3$ or only solution comes from $x+3=0$	A1 cso
				(2)
$\begin{aligned} & \text { 11. (ii)(b) } \\ & \text { Way } 3 \end{aligned}$	$\left\{\left(x^{2}+9 x+21\right)=0 \Rightarrow\right\} x=\frac{-9 \pm \sqrt{81-4(1)(21)}}{2}$		Applies $b^{2}-4 a c$ on their " $x^{2}+9 x+21$ " where $a, b, c \neq 0$. Note: This must be seen as part of the quadratic formula.	M1
	e.g. $x=\frac{-9 \pm \sqrt{-3}}{2} \Rightarrow\{$ Quadratic $\}$ has no solutions and so $x=-3$.		$x=\frac{-9 \pm \sqrt{-3}}{2}$	
	e.g. $x=\frac{-9 \pm \sqrt{-3}}{2} \Rightarrow\{$ Quadratic \} has no solutions and so the only solution comes from $x+3=0$		\Rightarrow no solution (or maths error) and either $x=-3$ or only solution comes from $x+3=0$	A1 cso
				(2)
	Question 11 Notes			
11. (a)	Note	$'=0$ ' can be implied in their working for A1		
	Note	$1^{\text {st }} \mathrm{M}$ can be given for applying $\mathrm{f}(\pm 3)$ to their manipulated $\mathrm{f}(x)=\ldots$		
	Note	ALT: $\mathrm{f}(-3)=13+3(-3)+(-3+2)(-3+5)^{2}=0 \Rightarrow k=5$ is sufficient for $1^{\text {st }} \mathrm{M} 1$		
	Note	Give dM0 for simplifying $13+3(-3)+(-3+2)(-3+k)^{2}=0$ to give$13-9+(-1)(-3+k)^{2}=0 \Rightarrow 3(-3+k)^{2}=0$		
	Note	Give dM0 for simplifying $13+3(-3)+(-3+2)(-3+k)^{2}=0$ to give - $4-(-3+k)^{2}=0 \Rightarrow 4-9-k^{2}=0$ or $4-\left(9-6+k^{2}\right)=0 \Rightarrow k=\ldots$		
	Note	Condone writing $-k^{2}+6 k+5=0 \Rightarrow(k-5)(k-1)=0 \Rightarrow k=5,1$ for A1		
	Note	Give final A1 for $-k^{2}+6 k-5=0$ or $k^{2}-6 k+5=0 \Rightarrow k=5,1$ with no intermediate working.		

	Question 11 Notes Continued	
11. (b)(i)	Note	Condone $(x+5)^{2} \rightarrow x^{2}+25$ as part of their working for the $1^{\text {st }} \mathrm{M}$ mark.
	Note	Condone $2^{\text {nd }} \mathrm{M} 1$ e.g. for $x^{3}+12 x^{2}+48 x+63 \rightarrow(x+3)\left(x^{2}+12 x+48\right)$
(b)(ii)	Note	When a student refers to 'solution' it is assumed that they mean a 'real solution'.
	Note	' <0 ' or 'it is negative' must also be stated in a discriminant method for A1
	Note	A correct discriminant calculation, e.g. $9^{2}-4(1)(21), 81-84$ or -3 is sufficient as part of their working for A1. E.g. Give M1 A1 for $b^{2}-4 a c=81-84<0$, so no solution $\Rightarrow x=-3$
	Note	Give A0 for incorrect working, e.g. $9^{2}-4(1)(21)=-5<0$
	Note	Give M1 A1 cso for $x=-\frac{9}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i},-3$
	Note	Allow the statement 'as $y=\mathrm{f}(x)$ is a cubic \{function\}, and cubic functions have at least one solution, $\mathrm{f}(x)\{=0\}$ has one solution' written in place of either 'either $x=-3$ or only solution comes from $x+3=0$ ' for the A1 mark

Question Number	Scheme	Notes	Marks
12.	$y=\tan x, y=5 \cos x ; 0<x \leq 2 \pi$		
(a)	$5 \cos x=\tan x$	Sets $5 \cos x=\tan x$	B1
	$5 \cos x=\frac{\sin x}{\cos x}\left\{\Rightarrow 5 \cos ^{2} x=\sin x\right\}$	Applies $\tan x=\frac{\sin x}{\cos x}$ to their equation correctly multiplies both sides by $\cos x$	M1
	$5\left(1-\sin ^{2} x\right)=\sin x$	Uses $\cos ^{2} x=1-\sin ^{2} x$ to form an equation in just $\sin x$	M1
	$5 \sin ^{2} x+\sin x-5=0$ *	Correct proof with no notational errors	A1 * cso
			(4)
(b)	$\begin{aligned} & \cdot \sin x=\frac{-1 \pm \sqrt{1-4(5)(-5)}}{10} \\ & \left\{=\frac{-1 \pm \sqrt{101}}{10}=0.9049 \ldots,-1.1049 \ldots\right\} \\ & \cdot 5\left(\sin x+\frac{1}{10}\right)^{2}-\frac{1}{20}-5=0 \Rightarrow \sin x=\ldots \\ & \quad\left(\sin x+\frac{1}{10}\right)^{2}-\frac{1}{100}-1=0 \Rightarrow \sin x=\ldots \end{aligned}$	pts to solve the quadratic $=0$ by correct tic formula or by completing the square give $\sin x=\ldots$, (but condone just $x=\ldots$. $\text { instead of } \sin x=\ldots \text {... }$ Note: Factorisation attempts score M0. Note: The negative square root can be omitted in their working.	M1
	$\begin{gathered} x=1.13135 \ldots, 2.01024 \ldots \\ \left\{\Rightarrow x_{A}=1.13, x_{B}=2.01(2 \mathrm{dp})\right\} \end{gathered}$	dependent on the previous M mark 'arcsin' to obtain at least one value of x adians or in degrees) written down to at least one decimal place. dM1 for any of $x=$ awrt 1.1, awrt 2.0, rt 64.8, awrt 115.2, awrt 3.6, awrt 5.9, awrt 204.6 or awrt 335.4	dM1
		one of either $x=$ awrt 1.13, awrt 2.01, awrt 64.82 or awrt 115.18	A1
		Both $x=$ awrt 1.13 and $x=$ awrt 2.01 no extra solutions in the range $(0,2 \pi]$ for $x_{A}=$ awrt 1.13 and $x_{B}=$ awrt 2.01	A1
	Note: Work for part (b) cannot be recovered in part (c).		(4)
(c) (i)	22	22	B1
	- 2 solutions every 2π (or 360°) plus 2 solutions in the final π (or 180°) or states $2(10)+2$ - 20 solutions in 20π (or 1800°) plus two solutions in the final π (or 180°) or states $20+2$ - 20 solutions for $0<x<20 \pi$ so 22 solutions for $0<x \leq 21 \pi$ - each solution is repeated another 10 more times	dependent on the previous B mark Acceptable reason or acceptable calculation.	dB1
(ii)	40	40	B1
	- 2 solutions every π (or 180°) or states $2(20)$ - 4 solutions every 2π (or 360°) or states $4(10)$	dependent on the previous B mark Acceptable reason or acceptable calculation.	dB1
			(4)
			12

	Question 12 Notes	
12. (b)	Note	Completing the square: Give M1 for either $5\left(\sin x \pm \frac{1}{10}\right)^{2} \pm q \pm 5=0 \Rightarrow \sin x=\ldots$ or for $\left(\sin x \pm \frac{1}{10}\right)^{2} \pm q \pm 1=0 \Rightarrow \sin x=\ldots ; q \neq 0$
	Note	Give M0 dM0 A0 A0 for writing down $x=1.13,2.01$ from no working.
	Note	Give M0 dM0 A0 A0 for writing down $x=$ awrt 1.13, awrt 2.01, awrt 64.82 or awrt 115.18 from no working.
	Note	Condone ${ }^{\text {st }} \mathrm{M} 1$ for writing down (from their graphical calculator) $\sin x=$ awrt 0.9
	Note	Give M1 dM1 A1 A0 for ' $\sin x=0.9 \Rightarrow x=1.13$ '
	Note	Give M1 dM1 A1 A1 for ' $\sin x=0.9 \Rightarrow x=1.13,2.01$ '
	Note	Give $2^{\text {nd }} \mathrm{A} 0$ for incorrectly deducing $x_{A}=$ awrt 2.01 and $x_{B}=$ awrt 1.13

Question Number	Scheme		Notes	Marks
13. (a)	$\frac{1}{2} r^{2} \theta=200 \quad\left(\text { or } \frac{\theta}{2 \pi}=\frac{200}{\pi r^{2}}\right)$		States or uses $\frac{1}{2} r^{2} \theta=200$, o.e.	B1
	$P=r+r+r \theta$		States or uses $\{P=\}=2 r+r \theta$ o.e. Allow B1 for $\{P=\} 2 r+l, l=r \theta$	B1
	$\begin{aligned} & \frac{1}{2} r^{2} \theta=200 \Rightarrow \\ & \text { - } r \theta=\frac{400}{r} \Rightarrow P=2 r+\frac{400}{r} * \\ & \cdot \theta=\frac{400}{r^{2}} \Rightarrow P=2 r+r\left(\frac{400}{r^{2}}\right) \Rightarrow P=2 r+\frac{400}{r} * \end{aligned}$		Applies a complete process of substituting $r \theta=\ldots$ or $\theta=\ldots$, where $',,, '=\mathrm{f}(r)$ into an expression for the perimeter which is of the form $P=\lambda r+\mu \theta ; \lambda, \mu \neq 0$	M1
			Correct proof with some reference to $P=, P \rightarrow$ or $P:$ as part of their proof. Note: 'Perimeter' can be written in place of P.	A1 *
				(4)
(b)	$\frac{\mathrm{d} P}{\mathrm{~d} r}=2-400 r^{-2}$		Differentiates $C r+\frac{D}{r}$ to give $P+Q r^{-2} ; C, D, P, Q \neq 0$	M1
			$\left\{\frac{\mathrm{d} P}{\mathrm{~d} r}=\right\} 2-400 r^{-2}$, o.e.	A1
	$\begin{aligned} \left\{\frac{\mathrm{d} P}{\mathrm{~d} r}=0\right. & \Rightarrow\} 2-\frac{400}{r^{2}}=0 \\ & \Rightarrow 2 r^{2}-400=0 \Rightarrow r^{2}=\ldots \quad\{=200\} \end{aligned}$		Sets their $\frac{\mathrm{d} P}{\mathrm{~d} r}=0$ and rearranges to give $r^{ \pm n}=k, k>0, n=2$ or 3	M1
	$\begin{aligned} & \{r=10 \sqrt{2} \Rightarrow\} \\ & P=2(10 \sqrt{2})+\frac{400}{10 \sqrt{2}}=40 \sqrt{2} \end{aligned}$	dependent on the previous mark Substitutes their r (where $r>0$), which has been found by solving $\frac{\mathrm{d} P}{\mathrm{~d} r}=0$, into $P=2 r+\frac{400}{r}$		dM1
		$P=40 \sqrt{2} \text { or } \sqrt{1600} \text { or } 20 \sqrt{8} \text { or } \frac{80}{\sqrt{2}}$ or any exact equivalent in the form $a \sqrt{b}$ or $\frac{a}{\sqrt{b}}$		A1
				(5)
(c) Way 1	$\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}=800 r^{-3}>0 \Rightarrow \text { Minimum }\{\text { value of } P\}$		$\begin{array}{r} \text { Differentiates to give } \\ \left\{\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}=\right\} \pm K r^{-3}, K \neq 0 \end{array}$	M1
			$800 r^{-3},>0$ and minimum Note: ft is only allowed on their ' $r=\sqrt{200}$ ' value from (b), where $r>0$	A1 ft cso
	NB: A1 is cso, so calculations for $P^{\prime \prime}$ using their ' $r=\sqrt{200}$ ' must be correct to at least 2 sf			(2)
(c) Way 2	$\begin{aligned} & \{r=10 \sqrt{2}=14.142 \ldots \Rightarrow\} \\ & r=14.1 \Rightarrow \frac{\mathrm{~d} P}{\mathrm{~d} r}=-0.01197 \ldots<0 \\ & r=14.2 \Rightarrow \frac{\mathrm{~d} P}{\mathrm{~d} r}=0.01626 \ldots>0 \\ & \Rightarrow \text { Minimum }\{\text { value of } P\} \end{aligned}$		Applies a value on each side of their $=10 \sqrt{2}$ (where $r>0$) to an expression of the form $P+Q r^{-2} ; P, Q \neq 0$	M1
			Correct evaluations to at least 1 sf , $<0,>0$ and minimum	A1 ft cso
				(2)
				11

	Question 13 Notes	
13. (b)	Note	The $2^{\text {nd }} \mathrm{M}$ mark can be implied. Give $2^{\text {nd }} \mathrm{M}$ for $2-\frac{400}{r^{2}}=0 \rightarrow r=\sqrt{200}$ or $r=10 \sqrt{2}$ or $r=$ awrt 14.1
	Note	Give final dM1 A0 for $r=14.14 \ldots \Rightarrow P=$ awrt 56.6 without reference to a correct exact value for P.
	Note	Give $2^{\text {nd }}$ M0 for $2-\frac{400}{r^{2}}<0 \Rightarrow r<10 \sqrt{2}$ but give $2^{\text {nd }} \mathrm{M} 1 \mathrm{dM} 12^{\text {nd }} \mathrm{A} 1$ for $2-\frac{400}{r^{2}}<0 \Rightarrow r<10 \sqrt{2} \Rightarrow P=2(10 \sqrt{2})+\frac{400}{10 \sqrt{2}}=40 \sqrt{2}$
	Note	$\begin{aligned} & \text { Give } 2^{\text {nd }} \mathrm{M} 0 \text { for } 2-\frac{400}{r^{2}}>0 \Rightarrow r>10 \sqrt{2} \\ & \text { but give } 2^{\text {nd }} \mathrm{M} 1 \mathrm{dM} 12^{\text {nd }} \mathrm{A} 1 \text { for } 2-\frac{400}{r^{2}}>0 \Rightarrow r>10 \sqrt{2} \Rightarrow P=2(10 \sqrt{2})+\frac{400}{10 \sqrt{2}}=40 \sqrt{2} \end{aligned}$
(c)	Note	Ignore poor differentiation notation or the lack of differentiation notation in part (c).
	Note	Condone ' $\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}=800 r^{-3}>0 \Rightarrow$ Minimum value of r ' for final A1
	Note	Using their $r=10 \sqrt{2}$ from (b), give M1 A1 for any of - $\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}=800 r^{-3} \Rightarrow \frac{\mathrm{~d}^{2} P}{\mathrm{~d} r^{2}}=\frac{800}{(10 \sqrt{2})^{3}}>0 \Rightarrow$ Minimum - $\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}=800 r^{-3} \Rightarrow \frac{\mathrm{~d}^{2} P}{\mathrm{~d} r^{2}}=0.2828 \ldots>0 \Rightarrow$ Minimum - $\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}=800 r^{-3} \Rightarrow \frac{\mathrm{~d}^{2} P}{\mathrm{~d} r^{2}}=0.2828 \ldots>0 \Rightarrow P_{\text {min }}$ - $\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}=800 r^{-3} \Rightarrow \frac{\mathrm{~d}^{2} P}{\mathrm{~d} r^{2}}=\frac{\sqrt{2}}{5} \ldots>0 \Rightarrow$ Minimum
	Note	Using their $r=10 \sqrt{2}$ from (b), give M1 A0 for any of - $\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}=800 r^{-3} \Rightarrow \frac{\mathrm{~d}^{2} P}{\mathrm{~d} r^{2}}=\frac{800}{10 \sqrt{2}^{3}}>0 \Rightarrow$ Minimum \quad \{poor bracketing \} - $\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}=800 r^{-3} \Rightarrow \frac{\mathrm{~d}^{2} P}{\mathrm{~d} r^{2}}=\frac{800}{(40 \sqrt{2})^{3}}=0.0044 \ldots>0 \Rightarrow$ Minimum - $\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}=800 r^{-3} \Rightarrow \frac{\mathrm{~d}^{2} P}{\mathrm{~d} r^{2}}=0.282 \ldots \Rightarrow$ Minimum $\quad\{$ No reference to $>0\}$ - $\frac{\mathrm{d}^{2} P}{\mathrm{~d} r^{2}}=800 r^{-3} \Rightarrow \frac{\mathrm{~d}^{2} P}{\mathrm{~d} r^{2}}=\frac{800}{(10 \sqrt{2})^{3}}=8>0 \Rightarrow$ Minimum \quad \{incorrect evaluation $\}$

Question Number	Scheme			Notes	Marks
14.	(i) $G_{1}=22, G_{5}=130 ; G_{1}, G_{2}, G_{3}, \ldots$ is a geometric sequence (ii) $T_{1}=208, T_{2}=207.2, T_{1}, T_{2}, T_{3}, \ldots$ is a arithmetic sequence				
(i)	$a=22, a r^{4}=130 \quad$ or $22 r^{4}=130$	Writes down $a=22$ and $a r^{4}=130$ or writes down a correct equation in r only.			M1
	$r=\sqrt[4]{\frac{130}{22}}\{=1.559122245 \ldots\}$			or $\sqrt[4]{\frac{65}{11}}$ or awrt 1.56	A1
	$\left\{G_{2}=a r \Rightarrow\right\} \quad G_{2}=22(11.5591 \ldots .$.	dependent on the previous M mark Obtains r from $r^{4}=\frac{130}{22}$ o.e. and applies 22(their r)			dM1
	$=34.3\left(\mathrm{~km} \mathrm{~h}^{-1}\right) \mathbf{c a o}$	34.3 cao Note: Ignore the units			A1 cao
	Note: Condone a copying error (or slip) on one of either ' 22 ' or ' 130 ' for the M marks.				(4)
(ii) (a) Way 1	$\left\{T_{n}=0 \Rightarrow a+(n-1) d=0 \Rightarrow\right\}$				
	$\text { e.g. } \cdot 208+(n-1)(-0.8)=0 \Rightarrow n=261$ - $n=\frac{208}{0.8} \Rightarrow n=260$		Either a	es $a+(n-1) d=0$ with $d=-0.8$ to find $n=\ldots$ or deduces $n=\frac{208}{0.8}$	M1
	$\begin{aligned} & \text { - } S_{261}=\frac{261}{2}(2(208)+(260)(-0.8))\left\{=\frac{261}{2}(208)\right\} \\ & \text { - } S_{260}=\frac{260}{2}(2(208)+(259)(-0.8))\{=130(208.8)\} \\ & \text { - } S_{261}=\frac{261}{2}(208+0)\left\{=\frac{261}{2}(208)\right\} \\ & \text { - } \left.S_{260}=\frac{260}{2}(208+0.8)\right)\{=130(208.8)\} \end{aligned}$		depend Either with or with or wi	n the previous M mark $\text { es } S_{n}=\frac{n}{2}(2 a+(n-1) d)$ 08, $d=-0.8, n=" 261 "$ 08, $d=-0.8, n=" 260 "$ or applies $S_{n}=\frac{n}{2}(a+l)$ $l=208, n=" 261 ", l=0$ $=208, n=" 260 ", l=0.8$	dM1
	$\left\{\right.$ Maximum value of $\left.\mathrm{S}_{n}\right\}=27144$ cao			27144	A1 cao
					(4)
(a) Way 2	$\begin{aligned} & S_{n}=\frac{n}{2}(2(208)+(n-1)(-0.8))=\frac{n}{2}(416-0.8 n+0.8) \\ & \quad=\frac{n}{2}(416.8-0.8 n)=208.4 n-0.4 n^{2} \\ & \cdot \frac{\mathrm{~d} S_{n}}{\mathrm{~d} n}=208.4-0.8 n=0 \Rightarrow n=\frac{208.4}{0.8} \\ & S_{n}=-0.4\left(n^{2}-521 n\right)=-0.4\left((n-260.5)^{2}-(260.5)^{2}\right) \end{aligned}$			$S_{n}=\frac{n}{2}(2 a+(n-1) d)$ 8, $d=-0.8$) and either attempt (i.e. $n^{k} \rightarrow n^{k-1}$) entiate with respect to n, sets the result equal to 0 0 or <0) to find $n=\ldots$ attempt to complete the square	M1
	$\begin{gathered} n=260.5 \\ \text { or } S_{n}=-0.4\left((n-260.5)^{2}-(260.5)^{2}\right) \end{gathered}$	Uses a correct algebra to find or deduce $n=260.5$ Also allow $S_{n}=-0.4(n-260.5)^{2}+27144.1$			A1
	- $S_{260}=208.4(260)-0.4(260)^{2}$	dependent on the previous M mark Applies an integer value for n which either side of their $n=" 260.5 "$ to their $S_{n}=208.4 n-0.4 n^{2}$ or to a valid formula for S_{n}. (See notes)			dM1
	- $S_{261}=208.4(261)-0.4(261)^{2}$				
	\{Maximum value of $\left.\mathrm{S}_{n}\right\}=27144$ cao		Conc	maximum sum is 27144	A1 cao
					(4)
(ii) (b)	522			522	B1 cao
					(1)
					9

	Question 14 Notes	
14. (ii)	Note	Condone $1^{\text {st }} \mathrm{M} 11^{\text {st }} \mathrm{A} 1$ for $208+(n)(-0.8)=0 \Rightarrow n=260$
	Note	Give $1^{\text {st }} \mathrm{M} 01^{\text {st }} \mathrm{A} 0$ for $208+(n-1)(0.8)=0 \Rightarrow n=-261$ but allow $1^{\text {st }} \mathrm{M} 11^{\text {st }} \mathrm{A} 1$ for $208+(n-1)(0.8)=0 \Rightarrow n=-261 \rightarrow n=261$ (recovered)
	Note	Way 1: If a valid method gives a decimal value for n, then dM 1 will then be given for a correct method using $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ or $S_{n}=\frac{n}{2}(a+l)$ with $\lfloor n\rfloor$ (i.e. where $\lfloor n\rfloor$ the integer part of n)
	Note	Way 2: If a valid method gives a decimal value for n, then dM 1 mark will then be given for a correct method of applying S_{n} with integer n which is either side of their decimal value of n. E.g. If $n=260.5$ then either $n=260$ or $n=261$ must be applied to an S_{n} expression for dM1.
	Note	Way 2: If a valid method gives an integer value for n, then dM1 mark will then be given for a correct method of applying S_{n} with either n or $n-1$ E.g. If $n=250$ then either $n=250$ or $n=249$ must be applied to an S_{n} expression for dM1.
	Note	Give final dM0 A0 for finding $S_{260.5}=\frac{260.5}{2}(2(208)+(260.5)(-0.8))=27144.1$ or 27144 without reference to either $S_{261}=\frac{261}{2}(2(208)+(260)(-0.8))=27144$ or $S_{260}=\frac{260}{2}(2(208)+(259)(-0.8))=27144$
	Note	Allow 1 ${ }^{\text {st }} \mathrm{M} 11^{\text {st }} \mathrm{A} 1$ for finding $S_{n}=208.4 n-0.4 n^{2}$ and using their calculator to deduce $n=260.5$

Question Number	Scheme				Notes	Marks
15.	$C_{1}: x^{2}+(y-3)^{2}=26$, centre $S ; C_{2}:(x-6)^{2}+y^{2}=17$, centre Q					
(a)	$\{S Q=\} \sqrt{3^{2}+6^{2}}=3 \sqrt{5}$		States or implies that S and Q are distances 3 and 6 from O			M1
			Applies $S Q=\sqrt{3^{2}+6^{2}}$ or $S Q^{2}=3^{2}+6^{2}$			dM1
			$3 \sqrt{5}$			A1 cao
						(3)
(b)(i)	$\begin{gathered} C_{1}: x^{2}+y^{2}-6 y+9=26 \\ C_{2}: x^{2}-12 x+36+y^{2}=17 \end{gathered}$ Subtracting gives: $-6 y+9-(-12 x+36)=9$			Attempts to multiply out both brackets followed by a correct method of eliminating both x^{2} and y^{2} from their simultaneous equations.		M1
	$\begin{gathered} -6 y+9+12 x-36=9 \\ 12 x-36=6 y \\ y=2 x-6^{*} \\ \hline \end{gathered}$			Correct proof with no errors seen in their working. Note: Condone omission of ' $=0$ ' where appropriate.		A1 *
$\begin{aligned} & \text { (b)(ii) } \\ & \text { Way } 1 \end{aligned}$	$\begin{aligned} & (x-6)^{2}+(2 x-6)^{2}=17 \\ & x^{2}-12 x+36+4 x^{2}-24 x+36=17 \\ & 5 x^{2}-36 x+72=17 \\ & 5 x^{2}-36 x+55=0 \end{aligned}$			Substitutes $y=2 x-6$ into either of their circle equations and proceeds to form a 3TQ in either x or y		M1
				$5 x^{2}-36 x+55\{=0\} \quad\left\{\right.$ or $\left.5 y^{2}-12 y-32\{=0\}\right\}$		A1
	$(x-5)(5 x-11)=0 \Rightarrow x=\ldots$			dependent on the previous M mark Correct method for solving their $3 \mathrm{TQ}=0$ to find $x=\ldots$		dM1
	- $x=5 \Rightarrow y=(2)(5)-6=4$ - $x=2.2 \Rightarrow y=(2)(2.2)-6=-1.6$			Substitutes at least one $x=\ldots$ back into an original equation to find at least one $y=\ldots$		dM1
	$P(5,4)$ and $R(2.2,-1.6)$			$P(5,4)$ and $R(2.2,-1.6)$ or $R\left(\frac{11}{5},-\frac{8}{5}\right)$		A1
	Note: $P: x=5, y=4$ and $R: x=2.2, y=-1.6$ is fine for A1					(7)
$\begin{aligned} & \text { (b)(ii) } \\ & \text { Way } 2 \end{aligned}$	$\begin{aligned} & y=\sqrt{26-x^{2}}+3, y=\sqrt{17-(x-6)^{2}} \\ & \sqrt{26-x^{2}}+3=\sqrt{17-(x-6)^{2}} \\ & 26-x^{2}+6 \sqrt{26-x^{2}}+9=17-x^{2}+12 x-36 \\ & 6 \sqrt{26-x^{2}}=12 x-54 \Rightarrow \sqrt{26-x^{2}}=2 x-9 \\ & 26-x^{2}=4 x^{2}-36 x+81 \\ & 5 x^{2}-36 x+55=0 \end{aligned}$			Substitutes one circle into the other circle and uses valid algebra to form a 3 TQ in either x or y.		M1
				then continue to apply the scheme for Way 1		
(c) Way 1	$P R=\sqrt{(5-2.2)^{2}+(4--1.6)^{2}}$			Uses the distance formula to find the length $P R$		M1
	$\left\{=\sqrt{\frac{196}{5}}\right.$ or $\sqrt{39.2}$ or $\left.\frac{14}{5} \sqrt{5}\right\}$			dependent on the previous M mark omplete correct method to find Area (SPQR)		
	$\operatorname{Area}(S P Q R)=\frac{1}{2}(3 \sqrt{5})\left(\frac{14}{5} \sqrt{5}\right)$					dM1
	$=21$ (units) ${ }^{2}$			21		A1 cao
						(3)
						13
	Question 15 Notes					
15. (b)(i)	Note	An alternative method of completing (b)(i) is to substitute $y=2 x-6$ into C_{1} and $y=2 x-6$ into C_{2} and verify that both equations can be manipulated to give the same $5 x^{2}-36 x+55=0$				
	Note	Methods of proof involving a gradient of 2 and a point lying on the line $P R$ will rarely score marks in this part.				

