

Mark Scheme (Results)

October 2020

Pearson Edexcel International Advanced Level In Core Mathematics C12 (WMA01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code WMA01_01_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through. After a misread, however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles.)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the <u>correct</u> formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1.(x^n \to x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question Number		Scheme		Notes	Marks	
1.	$6x^3 + 5x^2$	-6x=0				
(a)	$x(6x^2 + 5x - 6) = 0$			For dividing or factorising out the 'x'. This may be awarded for an answer of $x = 0$ or for sight of $6x^2 + 5x - 6$ or $(3x - 2)(2x + 3)$		
				or attempting to apply the formula or complete the square on $6x^2 + 5x - 6 = 0$		
		$x-6=0 \text{ or } x^2 + \frac{5}{6}x - 1 = 0 \Rightarrow 2(2x+3) = 0 \Rightarrow x = \dots$	}	dependent on the previous M mark A valid correct method of solving their $3TQ = 0$ to give $x =$	dM1	
	$x=0,\frac{2}{3},$	$-\frac{3}{2}$		$x = 0, \frac{2}{3}, -\frac{3}{2}$ Note: Give A0 for any extra values	A1	
4.)	6 : 3 0	5:20.6:0.0.0.0			(3)	
(b)	$6\sin^3\theta$ +	$5\sin^2\theta - 6\sin\theta = 0; \ \ 0 \le \theta < \epsilon$	π	Finds at least one value of θ for $\sin \theta = (\text{their } k \text{ from } (a)), 0 < k < 1$		
	$\sin \theta = 0$	or $\sin \theta = \frac{2}{3} \implies \theta = \dots$		(where $0 < \theta < \pi$) or for finds at least one of $\theta = 0$, awrt 0.73, awrt 2.41	M1	
				Note: Allow equivalent answers in degrees. E.g. $\theta = \text{awrt } 41.8$, awrt 138		
	$\theta = 0, 0.730, 2.41$			For at least two of $\theta = 0$, awrt 0.73 or awrt 2.41 Note: Allow equivalent answers in degrees. E.g. $\theta = \text{awrt 41.8}$, awrt 138		
			$\theta = 0$, awrt 0.730, awrt 2.41 and no extra values within the range $0 \le \theta \le \pi$		A1	
		Note: Ignore π	or awı	rt 3.14 for the final A mark	(3)	
	Question 1 Notes					
				-		
1. (a)	Note	• $(3x-2)(2x+3)=0$	$\Rightarrow x =$		ides any of	
		• $\left(x + \frac{5}{12}\right)^2 - \frac{25}{144} - 1 = 0 \implies x = \dots$				
		$\bullet x = \frac{-5 \pm \sqrt{5^2 - 4(6)}}{2(6)}$	(-6)	$\Rightarrow x = \dots$		
				rrite down at least one correct root for their 3TQ =	0	
	Note	(12)				
		or for $\left(x \pm \frac{5}{12}\right)^2 \pm q \pm 1 = 0 \Rightarrow x = \dots; q \neq 0$				
	Note			$x = 0, \frac{2}{3}, -\frac{3}{2} \text{ from no working}$		
	Note	Give M0 dM0 A0 for writin	g dow	on only $x = \frac{2}{3}$, $-\frac{3}{2}$ from no working		

	Question 1 Notes Continued					
1. (a)	Note	Give M1 dM1 A0 for $\{6x^3 + 5x^2 - 6x = 0 \Rightarrow\} 6x^2 + 5x - 6 = 0 \Rightarrow x = \frac{2}{3}, -\frac{3}{2}$				
	Note	Give M1 dM1 A1 for $\{6x^3 + 5x^2 - 6x = 0 \Rightarrow\} 6x^2 + 5x - 6 = 0 \Rightarrow x = 0, \frac{2}{3}, -\frac{3}{2}$				
	Note	Give M1 dM1 A1 for $\{6x^3 + 5x^2 - 6x = 0 \Rightarrow\} x(6x^2 + 5x - 6) = 0 \Rightarrow x = 0, \frac{2}{3}, -\frac{3}{2}$				
(b)	Note	Give M1 A1 A1 for $\theta = 0, 0.730, 2.41, 3.14$				
	Note	Give M1 A1 A1 for $\theta = 0, 0.730, 2.41, \pi$				
	Note	Give M1 A1 A0 for $\theta = 0, 0.73, 2.41, \pi$				
	Note	Condone $x =$ instead of $\theta =$ if it is clear that they are working with angle $x \equiv \theta$				
		and not $x = \sin \theta$				
	Note	Allow 0.00 written in place of 0				

Question Number		Scheme		Notes	Mark	:S
2.	$\int \left(15x^4 - \frac{1}{2}\right)^4 dx$	$+\frac{4}{3x^3}-4\bigg)\mathrm{d}x \; ; x>0$				
				At least one of either $15x^4 \rightarrow \pm Ax^5$,		
	$=15\left(\frac{x^{5}}{5}\right)+\frac{4}{3}\left(\frac{x^{-2}}{-2}\right)-4x+c$		$\frac{4}{3x^3} \to \pm Bx^{-2} \text{ or } \pm \frac{B}{x^2}, \text{ or } -4 \to -4x; A, B \neq 0$		M1	
	$=15\left(\frac{1}{5}\right)$	$\left(-\frac{1}{3}\right)^{-4x+c}$	$\frac{3}{3} \left(\frac{-2}{-2}\right)^{-4x+c}$ At least two correct integrated term which can be simplified or un-simplifie		A1	
				At least three correct integrated terms which can be simplified or un-simplified	A1	
	$=3x^5-\frac{2}{3}$	$\frac{2}{5}x^{-2} - 4x + c$ or $3x^5 - \frac{2}{3x^2}$	-4x+c	Correct simplified integration contained on the same line of working	A1	
		Note: $+c$ is	counted as	s an integrated term		(4)
						4
			Que	stion 2 Notes		
	Note	You can ignore subsequent	working a	fter a correct final answer.		
	Note	Note Poor notation (i.e. incorrect use of $\frac{dy}{dx}$ or \int) can be condoned for any or all of the i				,
	Note	+c is counted as 'integrated	l term' for	all the A marks.		

Question Number		Scheme	Notes	Marks			
3.	$u_1 = 5, u_1$	$u_{n+1} = ku_n + 2 \ \{ \Rightarrow u_2 = ku_1 + 2, \ u_3 = ku_2 + 2 \}$					
(a)	$u_2 = 5k +$		$u_2 = 5k + 2 \text{ or } u_2 = 2 + 5k$	B1			
	$u_3 = k(5k)$	(z + 2) + 2	Substitutes their u_2 which is in terms of k into $u_3 = ku_2 + 2$	M1			
	$u_3 = 5k^2 -$	+2k+2	$u_3 = 5k^2 + 2k + 2$	A1			
	3			(3			
(b) Way 1	$\{u_3=2 \Rightarrow$	$\Rightarrow \} 5k^2 + 2k + 2 = 2 \Rightarrow k = \{k = -0.4\}$	Sets their $u_3 = 2$, where u_3 is a 3TQ in k , and uses a valid method of solving a quadratic equation in k to give $k =$ Note: Allow M1 if a relevant value of k is subsequently rejected.	M1			
	$u_2 = 5("-$	$(0.4") + 2 = 0 \implies \sum_{n=0}^{3} u_n = 5 + "0" + 2$	dependent on the previous M mark Uses their value for k to calculate u_2	dM1			
		n=1	and adds their value for u_2 to 5 and 2				
		= 7 cso	7	Al cso			
		Note: Do not give dM1 for using $u_2 = 2$ ((which is found by using $k = 0$)	(3			
(b) Way 2	$\{u_3=2 \Rightarrow$	$\Rightarrow \} 5k^2 + 2k + 2 = 2 \Rightarrow k = \{k = -0.4\}$	Sets their $u_3 = 2$, where u_3 is a 3TQ in k , and uses a valid method of solving a quadratic equation in k to give $k =$ Note: Allow M1 if a relevant value of k is subsequently rejected.	M1			
	$u_4 = ("-0)$	$0.4")(5) + 2 = 0, \{u_3 = 2\},$ $0.4")(2) + 2 = 1.2$ $\sum_{n=1}^{3} \left(\frac{u_{n+1} - 2}{k}\right) = \frac{1}{"-0.4"}("0"+2 + "1.2" - 6)$	dependent on the previous M mark Uses their value for k to calculate u_2 and u_4 and applies $\frac{1}{\text{their } k} (\text{their } u_2 + 2 + \text{their } u_4 - 6)$	dM1			
		= 7 cso	7	A1 cso			
	Note: Do not give dM1 for using $u_2 = 2$ (which is found by using $k = 0$)						
		Questio	n 3 Notes				
	 	Give M0 A0 for $u_3 = k(5k + 2)$					
3. (a)	Note	Give M0 A0 for $u_3 = k(5k + 2)$					
3. (a) (b)	Note Note	Give M0 A0 for $u_3 = k(5k + 2)$ dM1 can also be given for a correct subs	stitution of $k = -0.4$ into $5k^2 + 7k + 9$ o.	e.			
1,7		Give M0 A0 for $u_3 = k(5k + 2)$ dM1 can also be given for a correct subs Give dM1 for $5 + 5(-0.4) + 2 + 5(-0.4)^2 + 10^2$	stitution of $k = -0.4$ into $5k^2 + 7k + 9$ o.	e.			
1,7		Give M0 A0 for $u_3 = k(5k + 2)$ dM1 can also be given for a correct subs Give dM1 for $5 + 5(-0.4) + 2 + 5(-0.4)^2 + 6$ Give dM1 for $5(-0.4)^2 + 7(-0.4) + 9$	stitution of $k = -0.4$ into $5k^2 + 7k + 9$ o.e $+2(-0.4) + 2$	e.			
1,7	Note	Give M0 A0 for $u_3 = k(5k + 2)$ dM1 can also be given for a correct subs Give dM1 for $5 + 5(-0.4) + 2 + 5(-0.4)^2 + 6$ Give dM1 for $5(-0.4)^2 + 7(-0.4) + 9$ Give dM0 for $5(-0.4) + 7(-0.4) + 9$ {=4.3	stitution of $k = -0.4$ into $5k^2 + 7k + 9$ o.e $+2(-0.4) + 2$	e.			
1,7		Give M0 A0 for $u_3 = k(5k + 2)$ dM1 can also be given for a correct subs Give dM1 for $5 + 5(-0.4) + 2 + 5(-0.4)^2 + 6$ Give dM1 for $5(-0.4)^2 + 7(-0.4) + 9$ Give dM0 for $5(-0.4) + 7(-0.4) + 9$ {=4.2 Way 1: Give M1 dM1 A0 for	stitution of $k = -0.4$ into $5k^2 + 7k + 9$ o.e. $+2(-0.4) + 2$ 2}. {This is a common error.}				
1,7	Note	Give M0 A0 for $u_3 = k(5k + 2)$ dM1 can also be given for a correct subs Give dM1 for $5 + 5(-0.4) + 2 + 5(-0.4)^2 + 6$ Give dM1 for $5(-0.4)^2 + 7(-0.4) + 9$ Give dM0 for $5(-0.4) + 7(-0.4) + 9$ {=4.2 Way 1: Give M1 dM1 A0 for	stitution of $k = -0.4$ into $5k^2 + 7k + 9$ o.e $+2(-0.4) + 2$				
1,7	Note	Give M0 A0 for $u_3 = k(5k + 2)$ dM1 can also be given for a correct subs Give dM1 for $5 + 5(-0.4) + 2 + 5(-0.4)^2 + 6$ Give dM1 for $5(-0.4)^2 + 7(-0.4) + 9$ Give dM0 for $5(-0.4) + 7(-0.4) + 9$ {=4.2 Way 1: Give M1 dM1 A0 for	stitution of $k = -0.4$ into $5k^2 + 7k + 9$ o.e. $+2(-0.4) + 2$ 2}. {This is a common error.}				
1,7	Note Note	Give M0 A0 for $u_3 = k(5k + 2)$ dM1 can also be given for a correct subs Give dM1 for $5 + 5(-0.4) + 2 + 5(-0.4)^2 + 6$ Give dM1 for $5(-0.4)^2 + 7(-0.4) + 9$ Give dM0 for $5(-0.4) + 7(-0.4) + 9$ {=4.2 Way 1: Give M1 dM1 A0 for • $5k^2 + 2k + 2 = 2 \Rightarrow k(5k + 2) = 0 \Rightarrow k = 6$ Way 1: Give M1 dM0 A0 for	stitution of $k = -0.4$ into $5k^2 + 7k + 9$ o.e. $+2(-0.4) + 2$ 2}. {This is a common error.}	'+ 2 = 11			
1,7	Note Note	Give M0 A0 for $u_3 = k(5k + 2)$ dM1 can also be given for a correct subs Give dM1 for $5 + 5(-0.4) + 2 + 5(-0.4)^2 + 6$ Give dM1 for $5(-0.4)^2 + 7(-0.4) + 9$ Give dM0 for $5(-0.4) + 7(-0.4) + 9$ {=4.2 Way 1: Give M1 dM1 A0 for • $5k^2 + 2k + 2 = 2 \Rightarrow k(5k + 2) = 0 \Rightarrow k = 6$ Way 1: Give M1 dM0 A0 for	extitution of $k = -0.4$ into $5k^2 + 7k + 9$ o.e. $+2(-0.4) + 2$ 2}. {This is a common error.} $= \frac{2}{5} ; u_2 = 5(0.4) + 2 = 4 \Rightarrow \sum_{n=1}^{3} u_n = 5 + "4"$	'+ 2 = 11			

	Question 3 Notes Continued					
3. (b)	Note	Give dM0 for an incorrect follow through value of u_2 from their k with no supporting				
		working.				
	Note	Send to review applying $u_3 = 3$ consistently to give				
		$\sum_{n=1}^{3} u_n = \text{any of } 9 - \sqrt{6}, 9 + \sqrt{6} \text{ or awrt } 6.55 \text{ or awrt } 11.4$				
		Otherwise give M0 dM0 A0 for applying $u_3 = 3$				

Question Number	Scheme			Notes	Marks	
4.	(i) $\frac{8^y}{4^{2x}} = \frac{\sqrt{2}}{32}$; (ii) $x\sqrt{3} = 4\sqrt{2} + x$					
(i) Way 1		$\frac{2^{3y}}{2^{4x}} = \frac{2^{\frac{1}{2}}}{2^{5}} \implies$	$2^{3y-4x} = 2^{\frac{1}{2}-5}$		M1 A1	
		$3y - 4x = -\frac{9}{2} \Rightarrow y = \frac{4}{3}x - \frac{4}{3}y = \frac{4}{3$	$\frac{3}{2}$ or $y = \frac{1}{6}(8x - \frac{1}{6}x - \frac$	-9) cso	dM1 A1 cso	
(i) Way 2		$\log\left(\frac{8^y}{4^{2x}}\right) = \log\left(\frac{\sqrt{2}}{32}\right) \Rightarrow y$	$\log 8 - 2x \log 4 =$	$\log\left(\frac{\sqrt{2}}{32}\right)$	M1	
		$y \log 8 - 2x \log 4 =$	$\log(\sqrt{2}) - \log(32)$)	A1	
		$2x \log 4 + \log(\sqrt{2}) - \log(32)$	$2x(2\log 2)$	$+\frac{1}{2}\log 2 - 5\log 2$	13.64	
	<i>y</i> :	$= \frac{2x \log 4 + \log(\sqrt{2}) - \log(32)}{\log 8} =$	$\Rightarrow y = {3}$	$\frac{2 - C}{3 \log 2}$	dM1	
		$\Rightarrow y = \frac{4}{3}x - \frac{3}{2} \text{ or } .$	$y = \frac{1}{6}(8x - 9)$ cs	so	A1 cso	
					(4	
(ii)		$=4\sqrt{2} \implies x(\sqrt{3}-1)=4\sqrt{2}$	For sight of a	an equation containing $(\pm\sqrt{3}\pm1)x$	M1	
	$x = \frac{4\sqrt{2}}{\sqrt{3} - 1}$		$x = \frac{4\sqrt{2}}{\sqrt{3}-1}$ or $x = \frac{-4\sqrt{2}}{1-\sqrt{3}}$ o.e.		A1	
	$x = \frac{4\sqrt{2}}{(\sqrt{3}-1)} \cdot \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)}$		dependent on the previous M mark Attempt to rationalise the denominator			
	$x = \frac{4\sqrt{6}}{}$	$\frac{+4\sqrt{2}}{2} \Rightarrow x = 2\sqrt{6} + 2\sqrt{2} \cos \theta$	Use	es a non-calculator process to obtain $x = 2\sqrt{6} + 2\sqrt{2}$ or equivalent	1 1 000	
					(4	
4 (i)	M1	II	Question 4 N			
4. (i) Way 1	M1	Uses index laws to correctly c	-5	• $\frac{(8^y)(32)}{4^{2x}} \rightarrow 2^{3y+5+\dots}$ or $2^{3y-4x+\dots}$ or $2^{5-4x+\dots}$ or 2^{3y+5}		
		• $(8^y)(32) \rightarrow 2^{3y+5}$ or $(4^{2x})(\sqrt{2})$	$(\sqrt{2}) \to 2^{4x + \frac{1}{2}}$	or 2^{5-4x+} or 2^{3y+}	5-4 <i>x</i>	
	A1	Correct equation in powers of				
	dM1	dependent on the previous N	M mark			
		Writes their equation in the form $2^{} = 2^{}$, equates their powers of 2 and rearranges to the subject.				
	A1	Obtains $y = \frac{4}{3}x - \frac{3}{2}$ or $y = \frac{4}{3}x - 1.5$ or $y = \frac{1}{6}(8x - 9)$ or $y = \frac{8x - 9}{6}$ by correct solution				
4. (i) Way 2	M1	Starts from a correct equation and writes down a correct equation in logarithms with some evidence of applying either the addition or subtraction law of logarithms and the power law of logarithms.				
	A1 Progresses as far as a correct $y \log 8 - 2x \log 4 = \log(\sqrt{2}) - \log(32)$, o.e.					
	dM1					
	A1	Uses a non-calculator proces	ss to obtain $y = \frac{4}{3}$	$\frac{1}{3}x - \frac{3}{2}$ or $y = \frac{4}{3}x - 1.5$ or exact equ	ivalent	
	by correct solution only.					

		Quest	tion 4 No	tes Continued				
4. (i)	Note	The following solution in powers	of 4 can	be marked using the same principles as W	/ay 1.			
		• $\frac{8^y}{4^{2x}} = \frac{\sqrt{2}}{32} \Rightarrow \frac{4^{\frac{3}{2}y}}{4^{2x}} = \frac{4^{\frac{1}{4}}}{4^{\frac{5}{2}}} \Rightarrow 4^{\frac{3}{2}y - 2x} = 4^{\frac{1}{4} - \frac{5}{2}} \Rightarrow \frac{3}{2}y - 2x = -\frac{9}{4} \Rightarrow y = \frac{4}{3}x - \frac{3}{2} \text{ or } y = \frac{1}{6}(8x - 9)$						
	Note	Give M0 A0 dM0 A0 for $y = \log y$	()				
4. (ii)	Note	Exact equivalent forms of $x = 2\sqrt{6}$ $x = 2\sqrt{6} + \sqrt{8}$, $x = \sqrt{24} + 2\sqrt{2}$, e		include $x = 2\sqrt{2} + 2\sqrt{6}$, $x = \sqrt{24} + \sqrt{8}$, e final A mark.				
	Note	Note • M0 A0 dM0 A0 for $x\sqrt{3} - x = 4\sqrt{2} \rightarrow x = 2\sqrt{6} + 2\sqrt{2}$ • M1 A0 dM0 A0 for $x(\sqrt{3} - 1) = 4\sqrt{2} \rightarrow x = 2\sqrt{6} + 2\sqrt{2}$ • (M1 A1) dM0 A0 for $x = \frac{4\sqrt{2}}{\sqrt{3} - 1} \rightarrow x = 2\sqrt{6} + 2\sqrt{2}$ • (M1 A1) dM1 A1 for $x = \frac{4\sqrt{2}}{\sqrt{3} - 1} \rightarrow x = \frac{4\sqrt{6} + 4\sqrt{2}}{2} \Rightarrow x = 2\sqrt{6} + 2\sqrt{2}$ • (M1 A1 dM1) A1 for $x = \frac{4\sqrt{2}}{(\sqrt{3} - 1)} \cdot \frac{(\sqrt{3} + 1)}{(\sqrt{3} + 1)} \rightarrow x = 2\sqrt{6} + 2\sqrt{2}$						
		with no intermediate working.						
Question Number		Scheme	Notes		Marks			
4.	(ii) $x\sqrt{3}$	$=4\sqrt{2}+x$						
(ii) Way 2	$3x^2 = 3$	$= (4\sqrt{2} + x)^{2}$ $2 + 4\sqrt{2}x + 4\sqrt{2}x + x^{2}$ $2x^{2} = 8\sqrt{2}x + 32$	Squares both sides, followed by an attempt to form a 3-term quadratic.		M1			
	or 2	$x^{2} = 4\sqrt{2}x + 16$ $2x^{2} - 8\sqrt{2}x - 32 = 0$ $x^{2} - 4\sqrt{2}x - 16 = 0$	Note: 2	A correct 3-term quadratic. $4x^2 - 8\sqrt{2}x = 32$ or $x^2 - 4\sqrt{2}x - 16 = 0$ } are acceptable for this mark.	A1			
	or $(x-(x-(x-(x-(x-(x-(x-(x-(x-(x-(x-(x-(x-($	$\frac{2}{\sqrt{2} \pm \sqrt{32 - 4(1)(-16)}}$ $\frac{2}{\sqrt{8} + \sqrt{24})(x - (\sqrt{8} + \sqrt{24})) = 0} \Rightarrow \sqrt{2})^2 - 8 - 16 = 0 \Rightarrow x = \dots$	<i>x</i> =	dependent on the previous M mark Correct method (applying the quadratic formula, factorising or completing the square) for solving a $3TQ = 0$ to find $x =$	dM1			
	$x = 2\sqrt{2}$	$+2\sqrt{6}$ or $x = \sqrt{24} + 2\sqrt{2}$ o.e. cs	0	$x = 2\sqrt{6} + 2\sqrt{2}$ or equivalent				
			O	4 Notes	(4)			
4 (**)	TAT /		Question					
4. (ii)	Note	The 3-term quadratic must involve the 3-						
Way 2	Note Note	The 3-term quadratic must involv Give 2 nd A0 for giving more than						
	Note	Give 2 A0 for giving more than	one answ	tel 101 x as then illian answer.				
	11010	 M0 A0 dM0 A0 for x√3 (M1 A1) dM0 A0 for 2x 	$x^2 = 8\sqrt{2}x$					

Question Number		Sche	eme		Notes	Marks	3
5.	Area(R)=	$=9 \Rightarrow \int_{4}^{a} \frac{4}{\sqrt{x}} \mathrm{d}x$	= 9				
		Note: You can mark part (a) and part (b) together.					
(a)(i) Way 1	$\left\{ \int_{-\sqrt{2\pi}}^{a} \frac{4}{\sqrt{2\pi}} \right\}$		$dx = \begin{cases} \frac{1}{\sqrt{3}}(9) = 3\sqrt{3} \end{cases}$		For $\frac{1}{\sqrt{3}}(9)$ or awrt 5.2	M1	
Way 1	$\bigcup_{A} \sqrt{3}x$	$\sqrt{3} \mathbf{J}_4 \sqrt{x}$) 43		$3\sqrt{3}$. Condone $\sqrt{27}$	A1	
(a)(ii) Way 1	$\left\{ \int_{1}^{a} \frac{4}{\sqrt{x}} dx \right\}$	$dx = \int_{1}^{4} \frac{4}{\sqrt{x}} dx + \frac{1}{\sqrt{x}} dx + \frac{1}{\sqrt{x}} dx$	$\int_{4}^{a} \frac{4}{\sqrt{x}} \mathrm{d}x $				
	$= \left[\frac{4x^{\frac{1}{2}}}{\frac{1}{2}}\right]^{\frac{1}{2}}$	+ 9		$\frac{4}{\sqrt{3}}$	Integrates so that $\frac{4}{\sqrt{x}} \to kx^{\frac{1}{2}}$; $k \neq 0$, is seen anywhere in Q5. Also allow M1 for integrating so that $\frac{1}{x} \to kx^{\frac{1}{2}}$; $k \neq 0$ is seen anywhere in Q5.	M1	
	L ² J ₁			No	dependent on the previous M mark $\left[kx^{\frac{1}{2}}\right]_{1}^{4}$ and adding 9; $k \neq 0$, te: Limits need to be correct, but do not need to be evaluated for this mark	dM1	
	$= \left[8x^{\frac{1}{2}}\right]_1^4$	$+9 = 8\sqrt{4} - 8\sqrt{1}$	1+9=16-8+9				
	=17				17	A 1	
							(5)
(b)	$\left[\frac{4x^{\frac{1}{2}}}{\frac{1}{2}}\right]_4^a =$	= 9	Integrates to g	L	$\begin{bmatrix} \frac{1}{2} \end{bmatrix}_4^a, k \neq 0$, and sets this result equal to 9 Note: Limits need to be correct, t do not need to be applied for this mark	M1	
	$8\sqrt{a}-8\sqrt{a}$	$\overline{4} = 9$	Aj	plies l	imits to obtain a correct equation in \sqrt{a}	A1	
	$\sqrt{a} = \frac{25}{8}$		Proce	eeds fro	dependent on the previous M mark om $p\sqrt{a} \pm b = 9$ to $\sqrt{a} = \lambda$; $p, b, \lambda \neq 0$	dM1	
	$a = \frac{625}{64}$				$a = \frac{625}{64}$ or $9\frac{49}{64}$ or 9.765625	A1	
	Note: T	he mark scheme	for part (b) can be a	plied a	anywhere in a student's solution to Q5.		(4)
							9
		T			5 Notes		
5.	Note	Some students	may use their answer	r to (b)	to answer (a)(i) and/or (a)(ii). See next p	age.	

Question Number		Scheme		Notes	Marks
5. (a)(i) Way 2	$\left\{ \int_{4}^{a} \frac{4}{\sqrt{3x}} \right\} = \frac{8}{\sqrt{3}} \left(\sqrt{\frac{6}{6}} \right)^{\frac{6}{6}}$	$dx = \frac{1}{\sqrt{3}} \int_{4}^{a} \frac{4}{\sqrt{x}} dx = \frac{1}{\sqrt{3}}$ $\frac{25}{54} - \sqrt{4}$	$\left[8x^{\frac{1}{2}}\right]_{4}^{\frac{625}{64}}$	dependent on gaining both M marks in (b) and their $a > 4$ or their $\sqrt{a} > 2$ For $\frac{8}{\sqrt{3}} \left(\sqrt{\text{(their } a)} - \sqrt{4} \right)$	dM1
	$=\frac{8}{\sqrt{3}}\left(\frac{25}{8}\right)$	$-2 = \frac{8}{\sqrt{3}} \left(\frac{9}{8}\right) = 3\sqrt{3}$		$3\sqrt{3}$. Condone $\sqrt{27}$	A1
					(2)
(a)(i) Way 3	(*)	$dx = \int_{4}^{a} 4(3x)^{-\frac{1}{2}} dx = \left[\frac{8}{3}(4x)^{-\frac{1}{2}}\right] dx = \left[\frac{8}{3}(4x)^{-\frac{1}{2}$	·)	dependent on gaining both M marks in (b) and their $a > 4$ or their $\sqrt{a} > 2$ For $\frac{8}{3} \left(\sqrt{(3)(\text{their } a)} - \sqrt{(3)(4)} \right)$ or $\frac{8}{\sqrt{3}} \left(\sqrt{(\text{their } a)} - \sqrt{4} \right)$	dM1
	$=\frac{8}{\sqrt{3}}\bigg(\frac{25}{8}$	$\sqrt{3} - 2\sqrt{3} = \frac{8}{3} \left(\frac{9}{8} \sqrt{3} \right) =$	$3\sqrt{3}$	$3\sqrt{3}$. Condone $\sqrt{27}$	A1
					(2)
(a)(ii) Way 2	$\left\{ \int_{1}^{a} \frac{4}{\sqrt{x}} \mathrm{d}x \right\} = \left\{ \int_{1}^{a} \frac{4}{\sqrt{x}} \mathrm{d}x \right\}$	$x = \int_{1}^{\frac{625}{64}} \frac{4}{\sqrt{x}} \mathrm{d}x$			
		「 ,		Integrates so that $\frac{4}{\sqrt{x}} \to kx^{\frac{1}{2}}$; $k \neq 0$, is seen anywhere in Q5. Also allow M1 for integrating so that $\frac{4}{\sqrt{3x}} \to kx^{\frac{1}{2}}$; $k \neq 0$ is seen anywhere in Q5.	M1
		$= \left[\frac{4x^{\frac{1}{2}}}{\frac{1}{2}}\right]_{1}^{\frac{625}{64}}$		dependent on the previous M mark, dependent on gaining both M marks in (b) and their $a > 4$ or their $\sqrt{a} > 2$ For $\left[kx^{\frac{1}{2}}\right]_{1}^{\text{their stated }a}$; $k \neq 0$ mits do not need to be applied for this mark.	dM1
	$\begin{bmatrix} 1 & \frac{1}{64} \end{bmatrix} = \begin{bmatrix} \frac{625}{64} \end{bmatrix}$	625			
	$= [8x^2]_1^{64}$	$= 8\sqrt{\frac{625}{64}} - 8\sqrt{1} = 25 - 8$	5		
	=17			17	A1
			0 : -	N. C. C.	(3)
F (1)	76. T ,	C' MO 40 13 60 40 C		Notes Continued	10
5. (b)	Note			part (a)(i) answer (which is in terms of a) equal $(\sqrt{a} - \sqrt{4}) = 9$ seen in part (b).	ai to 9.

Question Number		Scheme		Notes	Marks
6.	(a) $y = x$	x(x+3)(x-2); (b)	$\frac{\mathrm{d}y}{\mathrm{d}x} \ge 2$		
(a) Way 1	$y = x(x^{2} - 2x + 3x - 6)$ $\Rightarrow y = x^{3} - 2x^{2} + 3x^{2} - 6x$			$\{y = \} x^3 + Ax^2 + Bx; A, B \neq 0,$ where A, B can be simplified or un-simplified	M1 B1 on ePEN
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$	-4x+6x-6		Obtains a cubic expression and differentiates to give either $x^3 \to \lambda x^2$, $Ax^2 \to \mu x$ or $Bx \to B$; $A, B, \lambda, \mu \neq 0$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$	+ 2 <i>x</i> – 6		Correct differentiation in simplest form	A1
	d.				(3)
(b)	$3x^2 + 2x$	$+2x-6 \ge 2$ $-6 = 2 \Rightarrow 3x^2 + 2x - (x-4) = 0 \Rightarrow x = \dots$	-8=0	Sets their $\frac{dy}{dx} = 2$, forms a 3TQ = 0 and uses a correct valid method of solving their 3TQ = 0 to give $x =$	M1
	{Critical	values are $x = -2$,	4/3	Critical values of $x = -2$, $\frac{4}{3}$ or $x = -2$, awrt 1.33, These may be implied by their inequalities	A1
				Sets their $\frac{dy}{dx} = 2$, forms a 3TQ = 0 and uses their two istinct critical values to write down an <i>outside region</i>	M1
	<i>x</i> ≤	$-2 \text{ or } x \ge \frac{4}{3}$	$x \le -2$ or $x \ge \frac{4}{3}$ o.e., e.g. $(-\infty, -2] \cup [\frac{4}{3}, \infty)$. Allow ",", "or" or a space between the answers but give final M1 A0 for $x \le -2$ and $x \ge \frac{4}{3}$ or for $-2 \ge x \ge \frac{4}{3}$ as their final answer. This answer can be a ft for their two distinct critical values.		A1ft
		No	ote: $x \le \frac{4}{3}$	or $x \ge -2$ is final M0 A0	(4)
					7
				Question 6 Notes	
6. (b)	Note			the critical values are found from solving $\frac{dy}{dx} = 3x^2 + 2x$	
	Note A valid correct attempt of solving their $3x^2 + 2x - 8 = 0$ or their $x^2 + \frac{2}{3}x - \frac{8}{3} = 0$ incl • $(x+2)(3x-4) = 0 \Rightarrow x =$ • $\left(x+\frac{1}{3}\right)^2 - \frac{1}{9} - \frac{8}{3} = 0 \Rightarrow x =$ • $x = \frac{-2 \pm \sqrt{2^2 - 4(3)(-8)}}{2(3)} \Rightarrow x =$ • using their calculator to write down at least one correct root for their $3TQ = 0$				
	Note			We 1 st M1 for either $3(x \pm \frac{1}{3})^2 \pm q \pm 8 = 0 \Rightarrow x =$	
		or for $\left(x \pm \frac{1}{3}\right)^2 \pm q$			
	Note:	E.g. $\{x: x \in \mathbb{R}, x \le \mathbb{R}\}$	$\{-2\} \cup \{x:$	$x \in \mathbb{R}, x \ge \frac{4}{3}$, o.e., is acceptable for the 2 nd A mark.	

Question Number	Scheme	Notes	Marks
6.	(a) $y = x(x+3)(x-2)$; (b) $\frac{dy}{dx} \ge 2$		
	Way 2, Way 3 and Way 4: Product Rule		
(a) Way 2	$y = (x^2 + 3x)(x - 2) \Rightarrow \begin{cases} u = x^2 + 3x & v = x - 2 \\ \frac{du}{dx} = 2x + 3 & \frac{dv}{dx} = 1 \end{cases}$	Differentiates so that $x^2 + 3x \rightarrow Cx + 3$; $C \neq 0$	M1 B1 on ePEN
	$\frac{dy}{dx} = x^2 + 3x + (x - 2)(2x + 3)$	$\frac{dy}{dx} = x^2 + 3x + (x - 2)(Cx + 3); C \neq 0$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x - 6$	Correct simplified differentiation	A1
			(3)
(a) Way 3	$y = (x^2 - 2x)(x+3) \Rightarrow u = x^2 - 2x v = x+3$ $\frac{du}{dx} = 2x - 2 \frac{dv}{dx} = 1$	Differentiates so that $x^2 - 2x \rightarrow Cx - 2$; $C \neq 0$	M1 B1 on ePEN
	$\frac{dy}{dx} = x^2 - 2x + (x+3)(2x-2)$	$\frac{dy}{dx} = x^2 - 2x + (x+3)(Cx-2); C \neq 0$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x - 6$	Correct simplified differentiation	A1
			(3)
(a) Way 4	$y = x(x^{2} + x - 6)$ $\Rightarrow u = x v = x^{2} + x - 6$ $\Rightarrow \frac{du}{dx} = 1 \frac{dv}{dx} = 2x + 1$	Differentiates so that $x^2 - 2x + 3x - 6 \rightarrow Cx + 1$; $C \neq 0$	M1 B1 on ePEN
	$\frac{dy}{dx} = x^2 + x - 6 + x(2x+1)$	$\frac{dy}{dx} = x^2 + Ax - 6 + x(2x + A) \text{ or}$ $\frac{dy}{dx} = (x+3)(x-2) + x(2x+A); A \neq 0$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x - 6$	Correct simplified differentiation	A1
			(3)
	Question 6 N	lotes Continued	
6. (b)	Note The critical values found from solving $\frac{d}{d}$		
	$x = \frac{-1 \pm \sqrt{19}}{3}$ or $x = -1.78629, 1.1196$		

Question Number	Scheme	Notes	Mark	S		
7.	(i) $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3$; (ii) $\log_4 2x + 2\log_4 x = 8$					
(i) Way 1	$\left(\frac{1}{2}\right)^{p-1} = \frac{1.3}{3} \left\{ \text{or} \right.$	$2^{p-1} = \frac{3}{1.3}$	M1			
	$\log\left(\frac{1}{2}\right)^{p-1} = \log\left(\frac{1.3}{3}\right) \Rightarrow (p-1)\log\left(\frac{1}{2}\right)$	$ = \log\left(\frac{1.3}{3}\right) \Rightarrow p - 1 = \frac{\log\left(\frac{1.3}{3}\right)}{\log\left(\frac{1}{2}\right)} $	M1			
	$p = \frac{\log\left(\frac{1.3}{3}\right)}{\log\left(\frac{1}{2}\right)} + 1 \implies p = \text{awrt } 2.20$	$06 \ \{ \Rightarrow p = 2.206 \ (3 \ dp) \}$	A1			
			M1	(3)		
(i) Way 2	$\log\left(3\times\left(\frac{1}{2}\right)^{p-1}\right)$	$= \log 1.3$	M1			
	$\log 3 + \log \left(\frac{1}{2}\right)^{p-1} = \log 1.3 \Rightarrow \log 3 + (p-1)\log 3$	$ \left(\frac{1}{2}\right) = \log 1.3 \implies p - 1 = \frac{\log 1.3 - \log 3}{\log\left(\frac{1}{2}\right)} $	M1			
	$p = \frac{\log 1.3 - \log 3}{\log(\frac{1}{2})} + 1 \implies p = \text{awrt } 2.206 \ \{ \Rightarrow p = 2.206 \ (3 \text{ dp}) \}$					
				(3)		
(i) Way 3	$3\left(\frac{1}{2}\right)^p \left(\frac{1}{2}\right)^{-1} = 1.3 \implies 3(2)\left(\frac{1}{2}\right)^p = 1.3 =$	$\Rightarrow \left(\frac{1}{2}\right)^p = \frac{1.3}{6} \qquad \left\{ \text{or } 2^p = \frac{6}{1.3} \right\}$	M1			
	$\log\left(\frac{1}{2}\right)^p = \log\left(\frac{1.3}{6}\right) \Rightarrow p\log\left(\frac{1}{2}\right)$	$= \log\left(\frac{1.3}{6}\right) \Rightarrow p = \frac{\log\left(\frac{1.3}{6}\right)}{\log\left(\frac{1}{2}\right)}$	M1 A1			
	$p = \text{awrt } 2.206 \iff p = 0$	2.206 (3 dp)}	A1			
				(3)		
(i)	Way 1, Way 2, Way 3 and W					
Notes	For correctly making $\left(\frac{1}{2}\right)^{p-1}$, 2^{p-1}	` '	M1			
	or for writing a correct equation Complete process of writing a correct equation log laws (and correct index laws, where appropriate to the correct of the	involving logarithms and using correct	M1			
	p = awrt 2.2	206	A1			
	Note: See next page for how to ma	rk Special Case M1 M0 A0		(3)		
(::)		orrect method for combining the log terms. $\log_4 2x + 2\log_4 x \rightarrow \log_4(2x(x^2))$) A 1			
(ii)	$\log_4 2x + \log_4 x^2 = 8 \implies \log_4 (2x(x^2)) = 8$	Condone $\log_4 2x + 2\log_4 x \rightarrow \log_4(2x(x^2))$	IVII			
		$\log_4(ax^n) = 8 \Rightarrow ax^n = 4^8 \text{ or } 2^{16} \text{ or } 65536,$ where $ax^n = 2x^3$, $4x^4$ or $2x^2$ only	M1			
	$x^3 = 32768 \Rightarrow x = (32768)^{\frac{1}{3}} \Rightarrow x = 32$	x = 32	A1			
				(3)		
				6		

Question Number		Scheme	Notes	Marks				
7. (i) Way 4	$\left\{3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \Rightarrow \right\} \left(\frac{1}{2}\right)^{p-1} = \frac{1.3}{3}$ $\log_{\frac{1}{2}} \left(\frac{1}{2}\right)^{p-1} = \log_{\frac{1}{2}} \left(\frac{1.3}{3}\right) \Rightarrow p - 1 = \log_{\frac{1}{2}} \left(\frac{1.3}{3}\right)$ $M1$ $p = \log_{\frac{1}{2}} \left(\frac{1.3}{3}\right) + 1 \Rightarrow p = \text{awrt } 2.206 \ \{\Rightarrow p = 2.206 \ (3 \text{ dp})\}$ A1							
		0 "		(3)				
7 (i)	Note		on 7 Notes					
7. (i)	Note	(2)	$\log\left(\frac{1}{2}\right) = \log 1.3$ (i.e. 'invisible' brackets)					
		• $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \rightarrow \left(\frac{1}{2}\right)^{p-1} = \frac{13}{20}$	(i.e. for a division slip)					
	Note	Give M1 M1 A1 (recovered bracketing s	lip) for					
		$\bullet 3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \implies \log 3 + p - 11$	$\log\left(\frac{1}{2}\right) = \log 1.3 \Rightarrow p = \frac{\log\left(\frac{1.3}{3}\right)}{\log\left(\frac{1}{2}\right)} + 1 \Rightarrow p = 0$	=2.206				
	Note	Give M0 M0 A0 for any of $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \implies \left(\frac{3}{2}\right)^{p-1} = 1.3$ or $\left(\frac{1}{2}\right)^{p-1} = -2.7$						
	Note	Give M0 M0 A0 for						
		$\bullet 3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \implies \log 3 \times \log \left(\frac{1}{2}\right)^{p-1} = \log 1.3 \implies p = \frac{\log\left(\frac{1.3}{3}\right)}{\log\left(\frac{1}{2}\right)} + 1 \implies p = 2.206$						
	Note	Give M1 dM1 A1 {for using a calculator to write down} $p = \text{awrt } 2.206 \text{ from no working.}$						
	Note	Give M1 dM1 A1 for correct work leading	ng to $p = \text{awrt } 2.206$ E.g.					
		• give M1 dM1 A1 for $\left(\frac{1}{2}\right)^{p-1} = \frac{1}{2}$						
		• give (M1) M1 A1 for log3+(p-	$-1)\log\left(\frac{1}{2}\right) = \log 1.3 \implies p = \text{awrt } 2.206$					
		with no intermediate working.						
	Note	$(1)^{p-1}$						
		working.		0.2010				
	Note		n decimals to at least 2 dp. (or 1 dp for log 2					
		• e.g. Give M1 M1 A0 for $\left(\frac{1}{2}\right)^{p-1}$	$=0.43 \Rightarrow p=1+\frac{(-0.37)}{(-0.3)} \Rightarrow p=2.233$ (3)	3 dp)				

		Question 7 Notes					
7. (ii)	Note	Give M1 M1 A1 {for using a calculator to write down} $x = 32$ from no working					
	Note	Give M1 M1 A1 for correct work leading to $x = 32$. E.g.					
		• give M1 M1 A1 for $\log_4 2x + \log_4 x^2 = 8 \implies x = 32$					
		• give M1 M1 A1 for $\log_4 2x + \log_4 x^2 = 8 \implies \log_4 (2x^3) = 8 \implies x = 32$					
		rith no intermediate working.					
	Note	Give M0 M1 A0 for $\log_4 2x + 2\log_4 x = 8 \Rightarrow \log_4 2x^2 = 8 \Rightarrow 2x^2 = 65536 \Rightarrow x = 128\sqrt{2}$					
	Note	Give M0 M1 (implied) A0 for $\log_4 2x + 2\log_4 x = 8 \Rightarrow \log_4 2x^2 = 8 \Rightarrow x = 128\sqrt{2}$					
	Note	Give M0 M0 A0 for $\log_4 2x + 2\log_4 x = 8 \Rightarrow \log_4 2x^2 = 4 \Rightarrow x = 8\sqrt{2}$					
	Note	Give A0 for $x = \pm 32$ unless recovered					
	Note	Allow final A1 for (incorrect notation recovered) $x^3 = 32768 \Rightarrow x = \sqrt{32768} \Rightarrow x = 32$					
	Note	Give M0 M1 A0 for $\log_4 2x + 2\log_4 x = 8 \Rightarrow (\log_4 2x)(\log_4 x^2) = 8 \Rightarrow \log_4 2x^3 = 8 \Rightarrow x = 32$					

Question Number	Scheme		Notes		S
8.	34.059° 12.8871 122.940° 8.6] D	8.6 8.6 145.940°		
	Relevant ABCD for parts (b) and (c)	2.9455		
(a)	$\frac{\sin B\hat{C}A}{8.6} = \frac{\sin 23}{6}$		Attempts sine rule with one unknown, $B\hat{C}A$, and with the edges and relevant angles in the correct position	M1	
	$\{B\hat{C}A = \}$ 34.05911 or 145.94088		awrt 34 or awrt 146. This may be implied by $A\hat{B}C = \text{awrt } 123 \text{ or awrt } 11$		
	$A\hat{B}C = 180 - 23 - 34.05911 = 122.94088.$ $A\hat{B}C = 180 - 23 - 145.94088 = 11.05911.$		dependent on the previous M mark Complete correct method to find at least one value of angle $A\hat{B}C$ Note: This mark can be implied by either $A\hat{B}C$ = awrt 123 or awrt 11 Both awrt 122.9 and awrt 11.1	dM1	
(b)			1		(4)
(8)	E.g. • $AC^2 = 8.6^2 + 6^2 - 2(8.6)(6)\cos"122.9"$ • $\frac{AC}{\sin"122.9"} = \frac{6}{\sin 23}$ • $\frac{AC}{\sin"122.9"} = \frac{8.6}{\sin(180 - 23 - "122.9")}$	eith or us	blete correct method to find angle $A\hat{B}C$ and her uses the cosine rule to find AC^2 or AC with their obtuse angle $A\hat{B}C$ (and not $A\hat{B}C$ = their $B\hat{C}A$ = 145.9) here the sine rule with one unknown, AC , and with edges and relevant angles in the correct position	M1	
	AC = awrt 12.88 cm or awrt $12.89 cm$		AC = awrt 12.88 or awrt 12.89 Note: Ignore the units.	A1	(2)
(c)	Area $ABCD = (8.6)(6)\sin"122.9"$ or $= 2 \times [(0.5)(8.6)(6)\sin"122.9"$ or $= (8.6)("12.89")\sin 23$ or $= (6)("12.89")\sin(180 - 23 - "$ or $= (8.6)[(6)\sin(23 + "34.059"$	122.9")	Complete correct method to find angle $A\hat{B}C \text{ and a correct complete method}$ for finding area $ABCD$, where angle $A\hat{B}C$ is obtuse	M1	(2)
	= awrt $43.3 \text{ (cm}^2\text{) (3 sf)}$		awrt 43.3 Note: Ignore the units.	A1	(2)
					8

	Question 8 Notes								
8. (b)	Note	$A\hat{B}C = 122.9408861$ gives $AC = 12$	2.8871029						
	Note	$A\hat{B}C = 122.9$ gives $AC = 12.8847042$	2						
(c)	Note	Give M0 A0 for Area $ABCD = (8.6)($	Give M0 A0 for Area $ABCD = (8.6)(6)\sin"11.059" = 9.897998172$						
	Note	1 1	Condone M1 for (8.6)(6)[sin (awrt 57.1)] and A1 for awrt 43.3; ignoring how (awrt 57.1) has						
		been derived in part (a) and/or part (b)	en derived in part (a) and/or part (b).						
	Note	$(8.6)(6)\sin 122.9 = 43.32438501$							
	Note	$(8.6)(6)\sin 122.9408861 = 43.30437$	7342						
	Note	$(8.6)(12.89)\sin 23 = 43.31410852$							
	Note	$(8.6)(12.88)\sin 23 = 43.28050564$							
	Note	$(8.6)(12.8871029)\sin 23 = 43.30437$	343						
ALT	Alternati	ive Method of initially using Cosine R	ule with 6, 8.	6 and $AC = x$					
(a), (b)	Note: M	ark part (a) and part (b) together if t	his alternative	e method is used					
ALT	$6^2 = 8.6^2$	$+x^2-2(8.6)(x)\cos 23$	Applies cosi	ine rule with edges in the	det 3 5d 4				
	$x^2 - 2(8.0)$	$6)(x)\cos 23 + 8.6^2 - 6^2 = 0$	_	sition, forms a 3TQ and	1 st M1 in (a)				
		$2\cos 23)x + 37.96 = 0$		ct method (e.g. quadratic	and				
	17.20	$\cos 23 \pm \sqrt{(17.2\cos 23)^2 - 4(1)(37.96)}$	·	completing the square or to solve their $3TQ = 0$ to					
	<i>x</i> =	2(1)	1	give at least one of $x =$ 1st M1 in (
	15.83	$2268348 \pm \sqrt{98.83386616}$							
	$x = \frac{10.000}{1000}$	2							
			2.95 o	or awrt 2.9 or awrt 12.9	1st A1 in (a)				
	<i>x</i> = 2.945580577, 12.8871029			identifies in part (b) that awrt 12.89 or awrt 12.88					
		,		1st A1 in (b)					
	E.g.		Note	ote: Units are not required					
	_	$8.6^2 + 6^2 - 2.9455^2$	1.0501	dependent on					
	• $\cos AB$	$C = \frac{8.6^2 + 6^2 - "2.9455^2"}{2(8.6)(6)} \Rightarrow A\hat{B}C = 1$	11.0591	1 st M mark in part Complete method to					
	4.6	$8.6^2 + 6^2 - 12.8871^2$	100 0400	at least one va					
	• $\cos AB$	$C = \frac{8.6^2 + 6^2 - "12.8871^2"}{2(8.6)(6)} \Rightarrow A\hat{B}C =$	122.9408	of angle Al	$\hat{\mathbf{B}}C$ dM1 in (a)				
				Note: This mark can					
		,	\	implied by ei					
	• For "A	$AC'' < 8.6, \ A\hat{B}C = \sin^{-1}\left("2.9455" \times \frac{\sin^{-1}(m^2 + 1)}{m^2 + 1}\right)$	$\frac{n 23}{c}$	$A\hat{B}C = \text{awrt } 123 \text{ or aw}$	rt II				
		= 11.0591	6)						
			sin 22)	Both awrt 11.1 and eit	her				
	• For "A	$AC'' > 8.6, \ A\hat{B}C = 180 - \sin^{-1}\left(\text{"12.8871}\right)$	$" \times \frac{\sin 25}{6}$	awrt 122.8 or awrt 12	$\begin{array}{c c} 2^{\text{nd}} & \mathbf{A1} \\ \vdots & \ddots & \ddots \end{array}$				
		= 122.9408	0)	or awrt 12	3.0 in (a)				
		= 122.5 Too							
					(4)				
8. ALT	Note	Only apply the alternative mark scher		that the candidate using the	ne				
		Cosine Rule with $6, 8.6$ and $AC = x$							
	Note	A calculator can be used to write dow							
(c)	Note	Allow A1 for awrt 43.4 or awrt 43.3	in part (c) if	$ABC = \text{awrt } 122.8^{\circ} \text{ is four}$	nd				
		using the ALT method in part (b)							

Question Number	Scheme			Notes	Marks	
9.	(a) $y = \frac{2}{x} + k$; $k > 0$ (b) $y = 5$	-3x, l and l	C do not meet			
(a)	у		or a	Either a hyperbolic branch awn in quadrant 1 only for $x > 0$ hyperbolic branch drawn in both drant 2 and quadratic 3 for $x < 0$	M1	
				Correct graph – see notes	A1	
				cuts or meets the axes once only		
			y = k where $y = k$	here $x < 0$ and $\left(-\frac{2}{k}, 0\right)$ is stated		
		x		$\frac{2}{k}$ marked on the negative <i>x</i> -axis.	B1	
	$\left(-\frac{2}{k},0\right)$		Allow	$\left(0, -\frac{2}{k}\right)$ rather than $\left(-\frac{2}{k}, 0\right)$ if		
				marked in the correct place on the <i>x</i> -axis.		
				Only asymptotes $x = 0$		
	x = 0 D			and $y = k$ stated	B1	
	D			or seen stated in the correct		
	Note: If curve cuts/meets the n	egative x-ax	is once then allo	positions on their graph.	(4)	
(b)	Note: If curve cuts/meets the negative <i>x</i> -axis once then allow coordinates stated elsewhere. $\frac{2}{x} + k = 5 - 3x$ Sets $\frac{2}{x} + k = 5 - 3x$ and attempts to multiply both sides by <i>x</i>				(-)	
Way 1	$\frac{2}{x} + k = 5 - 3x$	X				
	$2 + kx = 5x - 3x^2$	and colle	ects all terms on	to one side. Allow e.g. ">0" or	M1	
	$3x^2 - 5x + 2 + kx = 0$			3 of the terms must be multiplied e slip. The $'=0'$ may be implied.		
	$3x^2 + (k-5)x + 2 = 0$			terms are not collected this mark		
	or $-3x^2 + (5-k)x - 2 = 0$	2011	- ' '	inplied by correct a , b and c stated	A1	
	or $a=3, b=k-5, c=2$			or applied in $b^2 - 4ac$		
	a2 4			heir a , b and c from their equation and $c = \pm 2$. This could be part		
	$\{b^2 - 4ac = \}$	of the qu	uadratic formula	M1		
	$(k-5)^2-4(3)(2)$	or as e.g	$b^2 - 4ac = 0,$	$a^2 - 4ac = 0$, $b^2 < 4ac$, $b^2 > 4ac$, $\sqrt{b^2 - 4ac}$,		
		etc	. Note: There	must be no x's in their $b^2 - 4ac$.		
				endent on the previous M mark		
	$\{b^2 - 4ac < 0 \Rightarrow (k-5)^2 - 24$	4<0}		a correct valid method of solving c = 0 to give two distinct critical		
			_	and applies $b^2 - 4ac < 0$ } to write		
	$(k-5)^2 - 24 = 0$			le region with both critical values	dM1	
			for <i>k</i> . Note: <i>A</i>	Allow this mark for $0.1 < k < 9.9$;	GIVII	
	$5 - 2\sqrt{6} < k < 5 + 2\sqrt{6}$		$5 - 2\sqrt{6} \le k$	$x \le 5 + 2\sqrt{6}$; $[5 - \sqrt{24}, 5 + \sqrt{24}]$;		
	$3 - 2\sqrt{6} < k < 5 + 2\sqrt{6}$			Note: Give final dM0 A0 for		
	(Note: $5 + \sqrt{24} > k > 5 - \sqrt{24}$	$\sqrt{24}$		$5 + \sqrt{24} < k < 5 - \sqrt{24}$, o.e.		
	is a correct answer)			$k < 5 + 2\sqrt{6}$ or exact equivalent.		
	12 12 22 12 20 min (101)			cept e.g. $5 - \sqrt{24} < k < 5 + \sqrt{24}$;	A1	
			$(5-\sqrt{24})$	$(5+\sqrt{24}); k \in (5-\sqrt{24}, 5+\sqrt{24})$		
					(5)	
					9	

	Question 9 Notes					
9. (a)	M1	For $x > 0$, condone the hyperbolic bran	anch being asymptotic to both the <i>x</i> -axis and <i>y</i> -axis.			
		Condone the hyperbolic branch signific	eantly 'bending back up' when $x \to \infty$			
		Condone the hyperbolic branch signific	cantly 'bending back down' for $x \to -\infty$			
		Condone the hyperbolic branch 'bendin	ng back' when approaching the y-axis asymptote.			
		Condone the hyperbolic branch touchin	g the y-axis or touching the horizontal asymptote.			
	A1	The graph must not touch the y-axis and	d must not touch the horizontal asymptote (where the			
		horizontal asymptote is clearly above the	ne y-axis). Note: The horizontal and/or vertical			
		asymptotes do not need to be marked or	r labelled for the A mark.			
		The hyperbolic branch must not signification	cantly 'bend back up' for $x \to \infty$			
		The hyperbolic branch must not signification	cantly 'bend back down' for $x \rightarrow -\infty$			
		The hyperbolic branch must not signification	cantly 'bend back' when approaching the y-axis			
		asymptote.				
	Note	Allow 2^{nd} B1 for $y = 0$ marked on the	x-axis in addition to $x = 0$ and $y = k$ marked			
		in the correct positions.				
	Note	Do not allow 2 nd B1 for y-axis stated as	their asymptote without reference to $x = 0$			
Egs.			1			
		(li			
	K		1/			
			1/			
			//			
	y=K					
	** * *	$\left(\frac{2}{\kappa}l_0\right)$				
) 2/4-1/-0			
			2/ = -K			
		1 1	2/= - K			
		: 1	1/2			
	E.ş	g. 1: Scores M1 A1 (just), B1 B0	E.g. 2: Scores M1 A0			
			9)			
		1	The state of the s			
		V-Je				
	-					
		-3- V-0X15				
			(0) -2/k)			
		\ \k^0	\			
		V				
		4.001				
	E.g	. 3: Scores M1, A1 (just), B1, B1	E.g. 4: Scores M1 A1 (just) B1 B1			
		· ,	• ,			

Question Number		Scheme		Notes	Marks			
9.	(a) $y = \frac{2}{x}$	$\frac{2}{x} + k$; $k > 0$ (b) $y = 5 - 3x$, l and	C do not meet					
(b) Way 2	$\left\{ \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{2}{x} + \frac{1}{x} \right) \right\}$	$-k$ $= -3 \Rightarrow $ $-\frac{2}{x^2} = -3$		$y = \frac{2}{x} + k$ to give $\frac{dy}{dx} = \pm Ax^{-2}$; 0, and sets the result equal to -3	M1			
	$\begin{cases} x^2 = \frac{2}{3} \end{cases}$	$\left\{ \Rightarrow \right\} x = \pm \sqrt{\frac{2}{3}}$	$x = \pm \sqrt{\frac{2}{3}} \mathbf{or}$	$x = \pm \text{ awrt } 0.82 \text{ or } x = \pm \frac{1}{3}\sqrt{6}$	A1			
	$\left\{ \frac{2}{x} + k = 5 - 3x, x = \sqrt{\frac{2}{3}}, -\sqrt{\frac{2}{3}} \implies \right\}$ Either $\frac{2}{\sqrt{\frac{2}{3}}} + k = 5 - 3\left(\sqrt{\frac{2}{3}}\right)$ or $\frac{2}{-\sqrt{\frac{2}{3}}} + k = 5 - 3\left(-\sqrt{\frac{2}{3}}\right)$		Substitutes at least one of their x , (which has been found from solving $\pm Ax^{-2} = -3$), into the equation $\frac{2}{x} + k = 5 - 3x$		M1			
		$k = 5 - 2\sqrt{6}$, $5 + 2\sqrt{6}$ or $k = \text{awrt } 0.1$, awrt 9.9		dependent on the previous M mark Uses a complete method to find both critical values for k and writes down an inside region with both critical values for k.				
		$5 - 2\sqrt{6} < k < 5 + 2\sqrt{6}$	$5 - 2\sqrt{6} < k$	$k < 5 + 2\sqrt{6}$ or exact equivalent.	A1			
		0	4° 0 N-4 C	45	(5)			
9. (b)	Note		Question 9 Notes Continued For the final A mark accept exact equivalents such as $\frac{10 - \sqrt{96}}{2} < k < \frac{10 + \sqrt{96}}{2}$; $k > 5 - 2\sqrt{6}$ and $k < 5 + 2\sqrt{6}$.					
	Note	Give final dM0 A0 (unless recov $k > 5 - 2\sqrt{6}$, $k < 5 + 2\sqrt{6}$	Give final dM0 A0 (unless recovered) for $k > 5 - 2\sqrt{6}$ or $k < 5 + 2\sqrt{6}$; $k > 5 - 2\sqrt{6}$, $k < 5 + 2\sqrt{6}$					
	Note	Give final dM1 A0 (unless recov	ered) for $5-2\sqrt{6}$	$< x < 5 + 2\sqrt{6}$, o.e.				
	Note	$3x^2 + kx - 5x + 2 = 0$ by itself is is final 1 st A1 (implied), 2 nd M1	1^{st} A0, but $3x^2 + k$	(kx - 5x + 2 = 0 followed by (k - 5)	$(5)^2 - 4(3)(2)$			

Question Number	Scheme				Notes	Marks	3
10.	(a) $\left(2 - \frac{1}{3}x\right)^9$ (b) $f(x) = \left(3 + \frac{a}{x}\right)\left(2 - \frac{1}{3}x\right)^9$; coefficie	nt of x in $f(x)$ is	0			
(a)	20 0 2 428 (1) 0 2 427 (1) ²	1)3	Co	onstant term of 2° or 512	B1		
Way 1	$=2^{9} + {}^{9}C_{1}(2)^{8} \left(-\frac{1}{3}x\right) + {}^{9}C_{2}(2)^{7} \left(-\frac{1}{3}x\right)^{2} + {}^{9}C_{2}$	$C_{3}(2)^{0}$	$\left(\frac{1}{3}x\right) + \dots$		See notes	<u>M1</u>	
					See notes	<u>A1</u>	
	$\left\{ = 512 + (9)(256) \left(-\frac{1}{3}x \right) + (36)(128) \left(\frac{1}{9}x^2 \right) \right\}$	+ (84)(64)	$\left(-\frac{1}{27}x^3\right)+\ldots\right\}$				
	$= 512 - 768x + 512x^2 - \frac{1792}{9}x^3 + \dots$ At least one correctly single x term or x^2 term or x				-	<u>A1</u>	
					$12x^2 - \frac{1792}{9}x^3$	A1	
	Note: Any of the final two A marks m Note: Work for the final A mark must	•			_		(5)
(2)	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$	$(1)^3$		See notes	B1		
(a) Way 2	$\left\{ 2^{9} \left(1 - \frac{1}{6} x \right)^{9} \right\} = 2^{9} \left(1 + {}^{9}C_{1} \left(-\frac{1}{6} x \right) + {}^{9}C_{2} \left(-\frac{1}{6} x \right) \right)$	$\frac{7}{3}\left(-\frac{1}{6}x\right)+\dots$		See notes	<u>M1</u>		
			/		See notes	<u>A1</u>	
	$ \begin{cases} = 512 \left(1 + (9) \left(-\frac{1}{6}x \right) + (36) \left(\frac{1}{36}x^2 \right) + (84) \left$	$\left(-\frac{1}{216}x^3\right)$	+)}				
	1702				ectly simplified	<u>A1</u>	
	$=512-768x+512x^2-\frac{1792}{9}x^3+\dots$		$\frac{x \text{ term or } x^2 \text{ term or } x^3 \text{ term}}{512 - 768x + 512x^2 - \frac{1792}{3}x^3}$		A 1		
			312-708	5x + 5	$\frac{12x - {9}x}{}$	A1	
	(a)(. 1792	.)					(5)
(b)	$f(x) = \left(3 + \frac{a}{x}\right) \left(512 - 768x + 512x^2 - \frac{1792}{9}x\right)$.3					
	Either $f(x) = 1536 - 2304x + 1536x^2 - \frac{1792}{3}$		±3('768')x ±'51		er writes down as part of their		
	$+\frac{512a}{x}-768+\frac{512ax}{9}$	$\frac{92}{2}ax^2$. 1	_	ansion of $f(x)$	3.61	
	x = 9 or x terms: $3(-768)x + 512ax$)			their x terms as $8'$) $x \pm '512'ax$	M1	
	` ,		or identifies the				
	or coefficient of x: $3(-768) + 512a$		dependent on th		(768') ± '512' <i>a</i> vious M mark		
	Sets their x term or $3(-768) + 512a = 0 \Rightarrow a =$ Sets their coefficient of		m equal to 0 or	dM1			
			of x equal to 0 is to give $a =$				
	$\left\{a = \frac{3(768)}{512} \Longrightarrow\right\} a = \frac{9}{2}$	Correct s	simplified a. E.g.			A1	
							(3)
							8

		Question 10 Notes						
10. (a)	B1	Constant term of 2^9 or 512. Do not allow B1 for $512x^0$ unless simplified to 2^9 or 512.						
Way 1	1st M1	$({}^{9}C_{1})()(x) \text{ or } ({}^{9}C_{2})()(x^{2}) \text{ or } ({}^{9}C_{3})()(x^{3}).$						
		Requires correct binomial coefficient in any form with the correct power of x, but the other						
		part of the coefficient may be wrong or missing.						
	1st A1	At least two correct terms from ${}^{9}C_{1}(2)^{8}\left(-\frac{1}{3}x\right) + {}^{9}C_{2}(2)^{7}\left(-\frac{1}{3}x\right)^{2} + {}^{9}C_{2}(2)^{6}\left(-\frac{1}{3}x\right)^{3}$,						
		equivalent, which can be un-simplified or simplified.						
	Note	${}^{9}C_{1}(2)^{8} - \frac{1}{3}x + {}^{9}C_{2}(2)^{7} - \frac{1}{3}x^{2} + {}^{9}C_{2}(2)^{6} - \frac{1}{3}x^{3} + \dots$ {bad bracketing} scores M0 unless later work						
		implies a correct method.						
	Note	The common error $2^9 + {}^9C_1(2)^8 \left(-\frac{1}{3}x\right) + {}^9C_2(2)^7 \left(-\frac{1}{3}x^2\right) + {}^9C_3(2)^6 \left(-\frac{1}{3}x^3\right)$						
		$512 - 768x + 1536x^2 - 1792x^3$ is B1 M1 A0 A1 A0						
	Note	The common error ${}^{9}C_{1}(2)^{8} \left(\frac{1}{3}x\right) + {}^{9}C_{2}(2)^{7} \left(\frac{1}{3}x\right)^{2} + {}^{9}C_{3}(2)^{6} \left(\frac{1}{3}x\right)^{3}$						
		$512 + 768x + 562x^2 + \frac{1792}{9}x^3$ is B1 M1 A0 A1 A0						
	Note	$2^{9} + {}^{9}C_{8}(2)^{8} \left(-\frac{1}{3}x\right) + {}^{9}C_{7}(2)^{7} \left(-\frac{1}{3}x\right)^{2} + {}^{9}C_{6}(2)^{6} \left(-\frac{1}{3}x\right)^{3} + \dots \text{ is also a correct expansion.}$						
(a)	B1	$2^9(1\pm)$ or $512(1\pm)$. Award when first seen.						
Way 2	1 st M1	Expands $(1 \pm kx)^9$; $k \neq \pm \frac{1}{3}$ to give either $({}^9C_1)()(x)$ or $({}^9C_2)()(x^2)$ or $({}^9C_3)()(x^3)$.						
		Requires correct binomial coefficient in any form with the correct power of <i>x</i> , but the other part of the coefficient may be wrong or missing.						
	1st A1	At least two correct terms from ${}^{9}C_{1}\left(-\frac{1}{6}x\right) + {}^{9}C_{2}\left(-\frac{1}{6}x\right)^{2} + {}^{9}C_{3}\left(-\frac{1}{6}x\right)^{3}$ or $-\frac{3}{2}x + x^{2} - \frac{7}{18}x^{3}$,						
		or equivalent, which can be un-simplified or simplified.						
	SC	Allow Special Case B1 M1 A1 for Way 2: $K\left(1 + {}^{9}C_{1}\left(-\frac{1}{6}x\right) + {}^{9}C_{2}\left(-\frac{1}{6}x\right)^{2} + {}^{9}C_{3}\left(-\frac{1}{6}x\right)^{3}\right)$						
		or $K\left(1 - \frac{3}{2}x + x^2 - \frac{7}{18}x^3\right)$ where $K \neq 2^9$ or $K \neq 512$						
	Note	$2\left(1+{}^{9}C_{1}\left(-\frac{1}{6}x\right)+{}^{9}C_{2}\left(-\frac{1}{6}x\right)^{2}+{}^{9}C_{3}\left(-\frac{1}{6}x\right)^{3}+\right) \text{ would get SC B1 M1 A1 A0 A0}$						
(a)	Note	E.g. $\binom{9}{3}$ or $\frac{9(8)(7)}{3!}$ or $\frac{9!}{3!6!}$ or 84 or even $\left(\frac{9}{3}\right)$ can be written in place of 9C_3						
	Note	Condone giving the final A mark for a 'simplified' $512 + -768x + 512x^2 + -\frac{1792}{9}x^3$.						
	Note	$-\frac{1792}{9}x^3$ may be written as either $-199\frac{1}{9}x^3$ or $-199.1x^3$ but do not allow $-199.1x^3$						
		or $-199x^3$						
	Note	Condone terms in reverse order $-\frac{1792}{9}x^3 + 512x^2 - 768x + 512$ for B1 M1 A1 A1 A1.						

		Question 10 Notes Continued					
10. (a)	Note	The terms may be "listed" rather than added for any of the first 4 marks.					
	Note	Any higher order terms can be ignored in part (a).					
	SC	Special Case: If a candidate expands in descending powers of x ,					
		i.e. $\left\{ \left(2 - \frac{1}{3}x\right)^9 \right\} = \left(-\frac{1}{3}x\right)^9 + {}^9C_1(2)^1 \left(-\frac{1}{3}x\right)^8 + {}^9C_2(2)^2 \left(-\frac{1}{3}x\right)^7 + {}^9C_3(2)^3 \left(-\frac{1}{3}x\right)^6$					
		$= -\frac{1}{19683}x^9 + (9)(2)\left(\frac{1}{6561}x^8\right) + (36)(4)\left(-\frac{1}{2187}x^7\right) + (84)(8)\left(\frac{1}{729}x^6\right)$					
		$= -\frac{1}{19683}x^9 + \frac{2}{729}x^8 - \frac{16}{243}x^7 + \frac{224}{243}x^6$					
		then they can gain SC: B1 M1 A1 A0 A0					
		B1 For a simplified $-\frac{1}{19683}x^9$					
		M1: $({}^{9}C_{1})()(x^{8})$ or $({}^{9}C_{2})()(x^{7})$ or $({}^{9}C_{3})()(x^{6})$					
		or $({}^{9}C_{8})()(x^{8})$ or $({}^{9}C_{7})()(x^{7})$ or $({}^{9}C_{6})()(x^{6})$					
		1st A1: At least two correct terms from ${}^{9}C_{1}(2)^{1}\left(-\frac{1}{3}x\right)^{8} + {}^{9}C_{2}(2)^{2}\left(-\frac{1}{3}x\right)^{7} + {}^{9}C_{3}(2)^{3}\left(-\frac{1}{3}x\right)^{6}$					
		which can be un-simplified or simplified.					
10. (b)	Note	Give 1 st M0 (unless recovered) for any extra x terms in their expansion of $f(x)$ or for any additional x terms in $\pm 3('768')x \pm '512'ax$ or for any additional terms in $\pm 3('768')\pm '512'a$.					
	Note	Give M1 dM1 for $\pm 3('768')x \pm '512'ax \Rightarrow a =$ or for $\pm 3('768') \pm '512'a = 0 \Rightarrow a =$					
	Note	Valid solutions include $2^9 a - 9(2^8) = 0$ or $\frac{36(2^7)}{9} a - \frac{(3)(9)(2^8)}{3} = 0 \implies a = \frac{9}{2}$					
	Note	Allow 1 st M1 for $3(-768x) + \frac{a}{x}(512x^2) = 0$ or $0x$					
	Note	M1 dM1 A1 can be given for $K\left(1 + {}^{9}C_{1}\left(-\frac{1}{6}x\right) + {}^{9}C_{2}\left(-\frac{1}{6}x\right)^{2} +\right)$					
		where $K \neq 2^9$ or $K \neq 512$ leading to $a = \frac{9}{2}$ in Q10(b).					
		E.g. $K = \frac{1}{512}$ gives $\frac{a}{512} - \frac{3(3)}{1024} = 0 \Rightarrow a = \frac{9}{2}$					

Question Number	Scheme				Notes	Mar	·ks	
11.	f(x) = 13 + 3x + (x+2)	$(x+k)^2$; g	given $(x+3)$	is a factor	of $f(x)$			
(a)(i),(ii)	$f(-3) = 13 + 3(-3) + (-3 + 2)(-3 + k)^2 = 0$				-	to obtain an expression in their expression equal to 0	M1	
	$4 - (-3 + k)^{2} = 4$ $(-3 + k)^{2} = 4$ $-3 + k = \pm 2$	$\begin{vmatrix} 4 - (k^2 - k^2) \\ k^2 - k^2 \end{vmatrix}$	e note) $(2^2 - 6k + 9) = (-6k + 5) = 0$	0	Correc	on the previous M mark et valid method for solving their quadratic in k to give t least one value of $k =$	dM	1
	k = 5, 1	`	5)(k-1) = 0 k = 5, 1			t method for finding $k = 5$ r is given) and finds $k = 1$	A1	
								(3)
(a)	$\{x=-3, k=5 \Rightarrow \}$				Use this A	It method for 1st M1 only		
(i) Alt	f(-3) = 13 + 3(-3) + (-3) = 13 - 9 - 4 = 13 - 9 - 4		,	Use		= 5 to correctly show that and concludes that $k = 5$	M1	
						(1)		
(b) (i)	f(x) = 13 + 3x + (x+2)	$(x+5)^2$		Atte	empts to mu	ltiply out $f(x)$ with $k = 5$		
. , . ,	= 13 + 3x + (x+2)(x+2)		,		to give	a 4-term cubic of the form $\pm Ax^3 \pm Bx^2 \pm Cx \pm D$;	M1	
	$= 13 + 3x + x^3 + 10x$	$x^2 + 25x + 3$	$2x^2 + 20x + 5$	50		$A, B, C, D \neq 0$		
	$= x^3 + 12x^2 + 48x +$	63				$x^3 + 12x^2 + 48x + 63$	A1	
	Hence $f(x) = (x+3)(x^2+9x+21)$			e.g. At divis e.g. fact	Uses their simplified cubic and $(x+3)$ in an attempt to find the quadratic factor. e.g. Attempts to divide by $(x+3)$ using long division to give $x^2 \pm kx +, k = \text{value} \neq 0$ e.g. factorising/equating coefficients to obtain $(x+3)(x^2 \pm kx \pm c), k = \text{value} \neq 0, c$ can be 0			
						-9x + 21) seen on one line	A1	
	Note	e: Give fi	inal M0 for a	ttempting	to divide by	(x-3)		(4)
	Note: Give final l	M0 for fac	ctorising/equa	ating coeff	ficients to gi	$ve(x-3)(x^2 \pm kx \pm c)$		
		Note: Yo	u can recove					
(b)(ii) Way 1	$\{b^2 - 4ac = \} 9^2 - 4(1)(1)$	21)	**	This	could be pa	$0x + 21$ " where $a, b, c \ne 0$. rt of the quadratic formula or embedded in $b^2 < 4ac$.	M1	
	e.g. $b^2 - 4ac = -3 < 0 \Rightarrow$ no solution and so $x = -3$					Finds $b^2 - 4ac = -3$, rates $-3 < 0 \Rightarrow$ no solution		
	e.g. $b^2 - 4ac = -3 < 0 = $ comes from $x + 3 = 0$	⇒ no solut	tion and the o	only solution	on	and either $x = -3$ or only tion comes from $x + 3 = 0$	A1	cso
	Note: Give A0 for stating ' $(x+3)$ is the only solution'.						(2)	
			·		•	ot e.g. $x=3$) for A1 cso		
	Note: Give A0 fo	or $b^2 - 4a$	$ac = -3 < 0 \Longrightarrow$	no solutio	on and $x^2 + $	$9x + 21 < 0 \Rightarrow x = -3$		
			nust clearly b	•				
	Note	e: The so	1ution x = -3	3 must be 1	referred to in	n (b)(ii)		Δ.
	<u> </u>						<u> </u>	9

Question Number		Scheme	Notes	Marl	ΚS			
11. (ii)(b) Way 2	$\left(x+\frac{9}{2}\right)^2$	$+21) = 0 \implies $ $-\frac{81}{4} + 21 = 0$ $= -\frac{3}{4} \text{ or } x + \frac{9}{2} = \pm \sqrt{-\frac{3}{4}}$	Completes the square on their " $x^2 + bx + c$ " where $b, c \ne 0$ to make $\left(x + \frac{b}{2}\right)^2$ or $\left(x + \frac{b}{2}\right)$ the subject.	M1				
	e.g. {Qua	adratic} has no solutions and so $x = -3$	$\left(x + \frac{9}{2}\right)^2 = -\frac{3}{4}$ or $x + \frac{9}{2} = \pm \sqrt{-\frac{3}{4}}$	A 1	200			
		adratic} has no solutions and so the only ution comes from $x + 3 = 0$	or $x + \frac{9}{2} = \sqrt{-\frac{3}{4}}$, \Rightarrow no solution (or maths error) and either $x = -3$ or only solution comes from $x + 3 = 0$	A1	cso			
					(2)			
11. (ii)(b) Way 3	$\{(x^2+9x$	$(x + 21) = 0 \Rightarrow $ $x = \frac{-9 \pm \sqrt{81 - 4(1)(21)}}{2}$	Applies $b^2 - 4ac$ on their " $x^2 + 9x + 21$ " where $a, b, c \neq 0$. Note: This must be seen as part of the quadratic formula.	M1				
	e.g. $x = -3$	$\frac{-9 \pm \sqrt{-3}}{2} \Rightarrow \{\text{Quadratic}\} \text{ has no solutions and }.$	•					
		$\frac{-9 \pm \sqrt{-3}}{2} \Rightarrow \{\text{Quadratic}\} \text{ has no solutions and}$ y solution comes from $x + 3 = 0$	⇒ no solution (or maths error) and either $x = -3$ or only solution comes from $x + 3 = 0$	A1	cso			
					(2)			
		Question 11	Notes					
11. (a)	Note	'= 0' can be implied in their working for A1						
	Note	1^{st} M can be given for applying $f(\pm 3)$ to their	<u> </u>					
	Note		ALT: $f(-3) = 13 + 3(-3) + (-3 + 2)(-3 + 5)^2 = 0 \Rightarrow k = 5$ is sufficient for 1 st M1					
	Note	Give dM0 for simplifying $13 + 3(-3) + (-3 + 2)$	$(-3+k)^2 = 0$ to give					
		$13-9+(-1)(-3+k)^2=0 \Rightarrow 3(-3+k)^2=0$						
	Note	Give dM0 for simplifying $13 + 3(-3) + (-3 + 2)$						
		• $4-(-3+k)^2=0 \Rightarrow 4-9-k^2=0$ or $4-(-3+k)^2=0$						
	Note	Condone writing $-k^2 + 6k + 5 = 0 \Rightarrow (k-5)(k-5)$						
	Note	Give final A1 for $-k^2 + 6k - 5 = 0$ or $k^2 - 6k$	$+5=0 \Rightarrow k=5,1$ with no intermediat	te wor	king.			

	Question 11 Notes Continued						
11. (b)(i)	Note	Condone $(x+5)^2 \rightarrow x^2 + 25$ as part of their working for the 1 st M mark.					
	Note	Condone 2 nd M1 e.g. for $x^3 + 12x^2 + 48x + 63 \rightarrow (x+3)(x^2 + 12x + 48)$					
(b)(ii)	Note	When a student refers to 'solution' it is assumed that they mean a 'real solution'.					
	Note	'<0' or 'it is negative' must also be stated in a discriminant method for A1					
	Note	A correct discriminant calculation, e.g. $9^2 - 4(1)(21)$, $81 - 84$ or -3 is sufficient as part of their					
		working for A1. E.g. Give M1 A1 for $b^2 - 4ac = 81 - 84 < 0$, so no solution $\Rightarrow x = -3$					
	Note	Give A0 for incorrect working, e.g. $9^2 - 4(1)(21) = -5 < 0$					
	Note	Give M1 A1 cso for $x = -\frac{9}{2} \pm \frac{\sqrt{3}}{2}i$, -3					
	Note	Allow the statement					
		'as $y = f(x)$ is a cubic {function}, and cubic functions have at least one solution, $f(x) = 0$ }					
		has one solution'					
		written in place of either 'either $x = -3$ or only solution comes from $x + 3 = 0$ ' for the A1 mark					

Question Number	Scheme		Notes	Marks
12.	$y = \tan x, \ y = 5\cos x \ ; \ 0 < x \le 2\pi$			
(a)	$5\cos x = \tan x$		Sets $5\cos x = \tan x$	B1
. ,	$5\cos x = \frac{\sin x}{\cos x} \{ \Rightarrow 5\cos^2 x = \sin x \}$	or	M1	
	$5(1-\sin^2 x) = \sin x$		M1	
	$5\sin^2 x + \sin x - 5 = 0 *$		an equation in just $\sin x$ Correct proof with no notational errors	A1 * cso
			•	(4)
(b)	• $\sin x = \frac{-1 \pm \sqrt{1 - 4(5)(-5)}}{10}$ $\left\{ = \frac{-1 \pm \sqrt{101}}{10} = 0.9049, -1.1049 \right\}$ • $5\left(\sin x + \frac{1}{10}\right)^2 - \frac{1}{20} - 5 = 0 \implies \sin x =$ $\left(\sin x + \frac{1}{10}\right)^2 - \frac{1}{100} - 1 = 0 \implies \sin x =$	Atten quadra to	M1	
	<i>x</i> = 1.13135, 2.01024	Uses (in: Accep	dM1	
	$\{ \Rightarrow x_A = 1.13, x_B = 2.01 (2 \text{ dp}) \}$	At leas	A1	
		and	A1	
	Note: Work for part (b) can	1 (/	(4)	
(c) (i)	22		22	B1
	 2 solutions every 2π (or 360°) plus 2 solution the final π (or 180°) or states 2(10) + 2 20 solutions in 20π (or 1800°) plus two solution the final π (or 180°) or states 20 + 2 20 solutions for 0 < x < 20π so 22 solutions for 0 < x ≤ 21π each solution is repeated another 10 more time 	tions	dependent on the previous B mark Acceptable reason or acceptable calculation.	dB1
(ii)	40		40	B1
	 2 solutions every π (or 180°) or states 2(20) 4 solutions every 2π (or 360°) or states 4(10) 	dependent on the previous B mark Acceptable reason or acceptable calculation.	dB1	
				(4)
				12

	Question 12 Notes							
12. (b)	Note	ote Completing the square: Give M1 for either $5(\sin x \pm \frac{1}{10})^2 \pm q \pm 5 = 0 \Rightarrow \sin x =$						
		or for $\left(\sin x \pm \frac{1}{10}\right)^2 \pm q \pm 1 = 0 \Rightarrow \sin x = \dots; q \neq 0$						
	Note	Give M0 dM0 A0 A0 for writing down $x = 1.13$, 2.01 from no working.						
	Note	Give M0 dM0 A0 A0 for writing down $x = \text{awrt } 1.13$, awrt 2.01, awrt 64.82 or awrt 115.18						
		from no working.						
	Note	Condone 1 st M1 for writing down (from their graphical calculator) $\sin x = \text{awrt } 0.9$						
	Note Give M1 dM1 A1 A0 for ' $\sin x = 0.9 \Rightarrow x = 1.13$ '							
	Note	Give M1 dM1 A1 A1 for ' $\sin x = 0.9 \implies x = 1.13, 2.01$ '						
	Note Give 2^{nd} A0 for incorrectly deducing $x_A = \text{awrt } 2.01$ and $x_B = \text{awrt } 1.13$							

Question Number	Scheme	Notes	Marks	3	
13. (a)	$\frac{1}{2}r^2\theta = 200 \left(\text{or } \frac{\theta}{2\pi} = \frac{200}{\pi r^2}\right)$	States or uses $\frac{1}{2}r^2\theta = 200$, o.e.	B1		
	$P = r + r + r\theta$	States or uses $\{P = \} = 2r + r\theta$ o.e. Allow B1 for $\{P = \}2r + l$, $l = r\theta$	B1		
	$\frac{1}{2}r^2\theta = 200 \implies$ $\bullet r\theta = \frac{400}{r} \implies P = 2r + \frac{400}{r} *$	Applies a complete process of substituting $r\theta =$ or $\theta =$, where ',,,'=f(r) into an expression for the perimeter which is of the form $P = \lambda r + \mu \theta$; $\lambda, \mu \neq 0$	M1		
	• $\theta = \frac{400}{r^2} \Rightarrow P = 2r + r\left(\frac{400}{r^2}\right) \Rightarrow P = 2r$	$r + \frac{400}{r}$	* Correct proof with some reference to $P = P \rightarrow P$: as part of their proof. Note: 'Perimeter' can be written in place of P .	A1 *	(4)
(b)			Dim i g D i		(4)
	$\frac{dP}{dr} = 2 - 400r^{-2}$		Differentiates $Cr + \frac{D}{r}$ to give $P + Qr^{-2}$; $C, D, P, Q \neq 0$	M1	
	$\mathrm{d}r$		$\left\{\frac{\mathrm{d}P}{\mathrm{d}r}=\right\} 2-400r^{-2}, \text{ o.e.}$	A1	
	$\left\{ \frac{\mathrm{d}P}{\mathrm{d}r} = 0 \Rightarrow \right\} 2 - \frac{400}{r^2} = 0$ $\Rightarrow 2r^2 - 400 = 0 \Rightarrow r^2 = \dots \ \{=$	Sets their $\frac{dP}{dr} = 0$ and rearranges to give $r^{\pm n} = k, k > 0, n = 2$ or 3	M1		
	→ 21 +00 − 0 → 1 − {−	2003	dependent on the previous mark		
	$\{r = 10\sqrt{2} \implies \}$		itutes their r (where $r > 0$), which has been found by solving $\frac{dP}{dr} = 0$, into $P = 2r + \frac{400}{r}$		
	$P = 2(10\sqrt{2}) + \frac{400}{10\sqrt{2}} = 40\sqrt{2}$		$P = 40\sqrt{2} \text{ or } \sqrt{1600} \text{ or } 20\sqrt{8} \text{ or } \frac{80}{\sqrt{2}}$		
		or	or any exact equivalent in the form $a\sqrt{b}$ or $\frac{a}{\sqrt{b}}$		
(c)			Differentiates to give		(5)
Way 1	d^2P		$\left\{ \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = \right\} \pm K r^{-3}, K \neq 0$	M1	
	$\frac{d^2 P}{dr^2} = 800r^{-3} > 0 \implies \text{Minimum {value}}$	of <i>P</i> }	$800r^{-3}$, > 0 and minimum Note: ft is only allowed on their ' $r = \sqrt{200}$ ' value from (b), where $r > 0$	A1 ft	cso
	NB: A1 is \mathbf{cso} , so calculations for P'' us	ir ' $r = \sqrt{200}$ ' must be correct to at least 2 sf		(2)	
(c) Way 2	$\{r = 10\sqrt{2} = 14.142 \Rightarrow \}$ $r = 14.1 \Rightarrow \frac{dP}{dr} = -0.01197 < 0$		Applies a value on each side of their $r = 10\sqrt{2}$ (where $r > 0$) to an expression of the form $P + Qr^{-2}$; $P, Q \ne 0$	M1	
	$r = 14.2 \Rightarrow \frac{dP}{dr} = 0.01626 > 0$ \$\Rightarrow\$ Minimum {value of }P\$		Correct evaluations to at least 1 sf, < 0,> 0 and minimum	A1 ft	cso
					(2)
					11

	Question 13 Notes								
13. (b)	Note The 2 nd M mark can be implied.								
		Give 2^{nd} M for $2 - \frac{400}{r^2} = 0 \rightarrow r = \sqrt{200}$ or $r = 10\sqrt{2}$ or $r = \text{awrt } 14.1$							
	Note								
		exact value for <i>P</i> .							
	Note	Give 2^{nd} M0 for $2 - \frac{400}{r^2} < 0 \implies r < 10\sqrt{2}$							
		but give 2 nd M1 dM1 2 nd A1 for $2 - \frac{400}{r^2} < 0 \implies r < 10\sqrt{2} \implies P = 2(10\sqrt{2}) + \frac{400}{10\sqrt{2}} = 40\sqrt{2}$							
	Note	Give 2^{nd} M0 for $2 - \frac{400}{r^2} > 0 \implies r > 10\sqrt{2}$							
		but give 2 nd M1 dM1 2 nd A1 for $2 - \frac{400}{r^2} > 0 \implies r > 10\sqrt{2} \implies P = 2(10\sqrt{2}) + \frac{400}{10\sqrt{2}} = 40\sqrt{2}$							
(c)	Note	Ignore poor differentiation notation or the lack of differentiation notation in part (c).							
	Note	Condone ' $\frac{d^2P}{dr^2} = 800r^{-3} > 0 \implies \text{Minimum value of } r$ ' for final A1							
	Note	Using their $r = 10\sqrt{2}$ from (b), give M1 A1 for any of							
		$\bullet \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 800r^{-3} \implies \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = \frac{800}{(10\sqrt{2})^3} > 0 \implies \text{Minimum}$							
		• $\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 800r^{-3} \implies \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 0.2828 > 0 \implies \text{Minimum}$							
		$\bullet \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 800r^{-3} \implies \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 0.2828 > 0 \Longrightarrow P_{\min}$							
		• $\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 800r^{-3} \implies \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = \frac{\sqrt{2}}{5} \dots > 0 \Rightarrow \text{Minimum}$							
	Note	Using their $r = 10\sqrt{2}$ from (b), give M1 A0 for any of							
		• $\frac{d^2P}{dr^2} = 800r^{-3} \implies \frac{d^2P}{dr^2} = \frac{800}{10\sqrt{2}^3} > 0 \implies \text{Minimum {poor bracketing}}$							
		• $\frac{d^2 P}{dr^2} = 800r^{-3} \implies \frac{d^2 P}{dr^2} = \frac{800}{(40\sqrt{2})^3} = 0.0044 > 0 \implies Minimum$							
		• $\frac{d^2P}{dr^2} = 800r^{-3} \implies \frac{d^2P}{dr^2} = 0.282 \implies \text{Minimum} \{\text{No reference to } > 0\}$							
		• $\frac{d^2 P}{dr^2} = 800r^{-3} \implies \frac{d^2 P}{dr^2} = \frac{800}{(10\sqrt{2})^3} = 8 > 0 \implies \text{Minimum {incorrect evaluation}}$							

Question Number	Scheme			Notes	Marks
14.	(i) $G_1 = 22$, $G_5 = 130$; G_1 , G_2 , G_3 , is a geometric sequence (ii) $T_1 = 208$, $T_2 = 207.2$; T_1 , T_2 , T_3 , is a arithmetic sequence				
(i)	$a = 22$, $ar^4 = 130$ or $22r^4 = 130$		Writes	down $a = 22$ and $ar^4 = 130$ n a correct equation in r only.	M1
	$r = \sqrt[4]{\frac{130}{22}} \ \{=1.559122245\}$		r = 4	$\sqrt{\frac{130}{22}}$ or $\sqrt[4]{\frac{65}{11}}$ or awrt 1.56	A1
	$\{G_2 = ar \Rightarrow\} G_2 = 22(1.5591')$		dent on the previous M mark Obtains m $r^4 = \frac{130}{22}$ o.e. and applies 22(their r)		dM1
	$= 34.3 \text{ (km h}^{-1}) \text{ cao}$		34.3	cao Note: Ignore the units	A1 cao
	Note: Condone a copying error (or slip)	on one of	either '22'	or '130' for the M marks.	(4)
(ii)	$\{T_n = 0 \implies a + (n-1)d = 0 \implies \}$				
(a) Way 1	e.g. • $208 + (n-1)(-0.8) = 0 \implies n = 261$			applies $a + (n-1)d = 0$ with 208, $d = -0.8$ to find $n =$	M1
	• $n = \frac{208}{0.8} \implies n = 260$			or deduces $n = \frac{208}{0.8}$ Finds $n = 261$ or $n = 260$	A 1
	0.0	,)	1 1		A1
	• $S_{261} = \frac{261}{2}(2(208) + (260)(-0.8))$ $\left\{ = \frac{261}{2} \right\}$	$\{-(208)\}$		ent on the previous M mark	
	• $S_{260} = \frac{260}{2}(2(208) + (259)(-0.8))$ {= 130	J		applies $S_n = \frac{n}{2}(2a + (n-1)d)$	
	• $S_{260} = {2} (2(208) + (239)(-0.8)) $ {= 130	(208.8)}		a = 208, d = -0.8, n = "261"	
			or with	a = 208, d = -0.8, n = "260"	dM1
	$\bullet S_{261} = \frac{261}{2}(208+0) \left\{ = \frac{261}{2}(208) \right\}$			or applies $S_n = \frac{n}{2}(a+l)$	
	• $S_{260} = \frac{260}{2}(208 + 0.8)) = \{ = 130(208.8) \}$			with $a = 208$, $n = "261"$, $l = 0$ th $a = 208$, $n = "260"$, $l = 0.8$	
			OI WIL	$\frac{11 \ u - 208, \ n - 200, \ t - 0.8}{27144}$	
	{Maximum value of S_n } = 27144 c		2/144	A1 cao (4)	
(a)	n (2(222)	2 0 0)		n , 2 , 1 , 1	(4)
Way 2	$S_n = \frac{n}{2}(2(208) + (n-1)(-0.8)) = \frac{n}{2}(416 - 0.8)$	8n + 0.8)		explies $S_n = \frac{n}{2}(2a + (n-1)d)$	
	$= \frac{n}{2}(416.8 - 0.8n) = 208.4n - 0.4n^2$,	d = 208, d = -0.8) and either	
	2			valid attempt (i.e. $n^k \rightarrow n^{k-1}$)	M1
	$\frac{dS_n}{dn} = 208.4 - 0.8n = 0 \implies n = \frac{208.4}{0.8}$		10 0	lifferentiate with respect to <i>n</i> , sets the result equal to 0	1,11
	010	2	(condor	the > 0 or < 0) to find $n =$	
	$S_n = -0.4(n^2 - 521n) = -0.4((n - 260.5)^2 -$	$(260.5)^2$	or a	valid attempt to complete the	
	n = 260.5	Τ	4 . 1 1	square	
	or $S_n = -0.4((n-260.5)^2 - (260.5)^2)$		•	a to find or deduce $n = 260.5$ = $-0.4(n-260.5)^2 + 27144.1$	A1
		Aisc		ent on the previous M mark	
	$S_{260} = 208.4(260) - 0.4(260)^2$ Applies an integer value for n which either side of				
	• $S_{261} = 208.4(261) - 0.4(261)^2$		-	to their $S_n = 208.4n - 0.4n^2$	dM1
	• 5 ₂₆₁ -200.4(201) - 0.4(201)		or to a valid	formula for S_n . (See notes)	
	{Maximum value of S_n } = 27144 cao	Concl	udes maximum sum is 27144	A1 cao	
(3) (1)	522	2			(4)
(ii) (b)	522 522				B1 cao (1)
					9

	Question 14 Notes							
14. (ii)	Note	Condone 1 st M1 1 st A1 for $208 + (n)(-0.8) = 0 \implies n = 260$						
	Note	Give 1 st M0 1 st A0 for $208 + (n-1)(0.8) = 0 \implies n = -261$						
		but allow 1 st M1 1 st A1 for 208 + $(n-1)(0.8) = 0 \implies n = -261 \implies n = 261$ (recovered)						
	Note	Way 1: If a valid method gives a decimal value for <i>n</i> , then dM1 will then be given for						
		a correct method using $S_n = \frac{n}{2}(2a + (n-1)d)$ or $S_n = \frac{n}{2}(a+l)$ with $\lfloor n \rfloor$						
		(i.e. where $\lfloor n \rfloor$ the integer part of n)						
	Note	Way 2: If a valid method gives a decimal value for n, then dM1 mark will then be given for						
		a correct method of applying S_n with integer n which is either side of their decimal value of n .						
		E.g. If $n = 260.5$ then either $n = 260$ or $n = 261$ must be applied to an S_n expression for dM1.						
	Note	Way 2: If a valid method gives an integer value for n , then dM1 mark will then be given for						
		a correct method of applying S_n with either n or $n-1$						
		E.g. If $n = 250$ then either $n = 250$ or $n = 249$ must be applied to an S_n expression for dM1.						
	Note	Give final dM0 A0 for finding $S_{260.5} = \frac{260.5}{2}(2(208) + (260.5)(-0.8)) = 27144.1$ or 27144						
		without reference to either $S_{261} = \frac{261}{2}(2(208) + (260)(-0.8)) = 27144$						
		or $S_{260} = \frac{260}{2}(2(208) + (259)(-0.8)) = 27144$						
	Note	Allow 1 st M1 1 st A1 for finding $S_n = 208.4n - 0.4n^2$ and using their calculator						
		to deduce $n = 260.5$						

Question Number		Scheme			Notes	Marks		
15.	$C_1: x^2 +$	$(y-3)^2 = 26$, centre S; $C_2:(x-6)^2 + y^2 = 17$, centre Q						
	States or implies that S and Q are distances 3 and 6 from C						M1	
(a)	$\{SQ =\} $	${SQ =} \sqrt{3^2 + 6^2} = 3\sqrt{5}$			Applies $SQ = \sqrt{2}$	$\sqrt{3^2 + 6^2}$ or $SQ^2 = 3^2 + 6^2$	dM1	
						$3\sqrt{5}$	A1 cao	
						·	(3)	
(b)(i)		$C_1: x^2 + y^2 - 6y + 9 =$	26		•	nultiply out both brackets		
		$C_2: x^2 - 12x + 36 + y^2$	=17		*	ect method of eliminating	M1	
	Subtraction	ng gives: $-6y + 9 - (-1)$	(2x + 36) =	= 9	both x and y	² from their simultaneous equations.		
	_	-6y + 9 + 12x - 36 = 9		Corr	rect proof with no err	ors seen in their working.		
		12x - 36 = 6y		Con		ondone omission of $'=0'$	A1 *	
		y = 2x - 6 *				where appropriate.		
(b)(ii)	$(x-6)^2 +$	$(2x-6)^2=17$		S	ubstitutes $v = 2x - 6$	into either of their circle		
Way 1	$x^2 - 12x$	$+36+4x^2-24x+36=$	17		•	ions and proceeds to form	M1	
	$5x^2 - 36x$	x + 72 = 17			•	a 3TQ in either x or y		
	$5x^2 - 36x$	x + 55 = 0		5 <i>x</i>	$(x^2 - 36x + 55) = 0$	$\{ \mathbf{or} \ 5y^2 - 12y - 32 \ \{=0\} \}$	A1	
			•		_	on the previous M mark		
	(x-5)(5x)	$(x-5)(5x-11) = 0 \implies x = \dots$			Correct method for solving their $3TQ = 0$ to find $x =$		dM1	
	• x = 5 =	$\Rightarrow y = (2)(5) - 6 = 4$			Substitutes at leas	st one $x =$ back into an	.1N./ 1	
	• $x = 2.2$	$\Rightarrow y = (2)(2.2) - 6 = -$	1.6		original equation	to find at least one $y =$	dM1	
	P(5,4) and $R(2.2,-1.6)$					$R(2.2, -1.6)$ or $R(\frac{11}{5}, -\frac{8}{5})$	A1	
		Note: $P: x = 5,$	y = 4 and	d <i>R</i> : <i>x</i>	y = 2.2, y = -1.6 is find	ne for A1	(7)	
(b)(ii)	$y = \sqrt{26}$	$\sqrt{-x^2}$ + 3, $y = \sqrt{17 - (x - x^2)^2}$	$-6)^2$					
Way 2	$\sqrt{26-x^2}$	$+3 = \sqrt{17 - (x-6)^2}$			Substitutes one circle into the other circle and uses valid algebra to form a 3TQ in			
	$26-x^2+$	$6\sqrt{26-x^2} + 9 = 17 - x^2$	$x^2 + 12x - 3$	36			M1	
		$\frac{1}{x^2} = 12x - 54 \Rightarrow \sqrt{26 - x}$			either x or y .			
	•	$=4x^2-36x+81$						
		x + 55 = 0				$5x^2 - 36x + 55 = 0$	A1	
	then continue to apply the scheme for Way 1							
(c)	$PR = \sqrt{(5)}$	$(5-2.2)^2+(4-1.6)^2$		U	Jses the distance forr	nula to find the length PR	M1	
Way 1	$ \left\{ = \sqrt{\frac{196}{5}} \text{ or } \sqrt{39.2} \text{ or } \frac{14}{5} \sqrt{5} \right\} $					•		
	Area(SP)	$QR) = \frac{1}{2} \left(3\sqrt{5} \right) \left(\frac{14}{5} \sqrt{5} \right)$		(_	on the previous M mark thod to find Area(SPQR)	dM1	
		$=21 \text{ (units)}^2$				21	Al cao	
							(3) 13	
	Question 15 Notes							
	Question 15 Notes (1) (1) Note: An alternative method of completing (b)(i) is to substitute $y = 2x + 6$ into C , as							
15 (b)(i)	Note	An alternative method	d of comr	Note An alternative method of completing (b)(i) is to substitute $y = 2x - 6$ into C_1 and into C_2 and verify that both equations can be manipulated to give the same $5x^2 - 3$				
15. (b)(i)	Note							
15. (b)(i)		into C_2 and verify that	at both eq	quation	s can be manipulated	d to give the same $5x^2 - 3$	6x + 55 = 0	
15. (b)(i)	Note Note	into C_2 and verify that	at both eq	quation	s can be manipulated		6x + 55 = 0	

Question Number	Scheme	Notes	Marks				
15.	$S(0,3)$ $\frac{9\sqrt{5}}{5}$ $R(2)$	P(5,4) Area = 4.2 $M(3.6,1.2)$ $O(6,0)$ $O(5,4)$ $O(6,0)$ $O(6,0)$ $O(6,0)$ $O(6,0)$ $O(6,0)$ $O(6,0)$					
(c)	Let M be the midpoint of PR						
Way 2	$M(3.6, 1.2)$ $PM = \sqrt{(5-3.6)^2 + (4-1.2)^2} \left\{ = \frac{7\sqrt{5}}{5} \right\}$ $SM = \sqrt{(0-3.6)^2 + (3-1.2)^2} \left\{ = \frac{9\sqrt{5}}{5} \right\}$ $MQ = \sqrt{(3.6-6)^2 + (1.2-0)^2} \left\{ = \frac{6\sqrt{5}}{5} \right\}$	Finds the midpoint of PR and finds lengths PM , SM , MQ . Note: S and Q must be of the form $S(0, \alpha)$ and $Q(\beta, 0)$; $\alpha, \beta \neq 0$	M1				
	Area(SPQR) $= 2\left(\frac{1}{2}\left(\frac{9\sqrt{5}}{5}\right)\left(\frac{7\sqrt{5}}{5}\right) + \frac{1}{2}\left(\frac{9\sqrt{5}}{5}\right)\left(\frac{7\sqrt{5}}{5}\right)\right)$	dependent on the previous M mark Complete correct method to find Area(SPQR)	dM1				
	$= 2(6.3 + 4.2) = 21 \text{ (units)}^2$						
			(3)				
(c) Way 3	$\cos(\hat{SPQ}) = \frac{(\sqrt{26})^2 + (\sqrt{17})^2 - (\sqrt{45})^2}{2(\sqrt{26})(\sqrt{17})}$ \$\Rightarrow \hat{SPQ} = 92.7263 \text{ or } 1.6183	Uses SP , PQ and SQ in a correct method of using the cosine rule to find angle $S\hat{P}Q =$ Note: S and Q must be of the form $S(0, \alpha)$ and $Q(\beta, 0)$; $\alpha, \beta \neq 0$	M1				
	Area(SPQR) = $2\left(\frac{1}{2}\sqrt{26}\sqrt{17}\sin 92.7263\right)$	dependent on the previous M mark Complete correct method to find Area(SPQR)	dM1				
	$= 21 \text{ (units)}^2$	21	A1 cao				
			(3)				
4 = 4 \ 2 \ 2		nestion 15 Notes					
15. (b)(ii)		at obtains a 3TQ in y, but this has come from an i					
	method of undoing the square root to incorrectly obtain the line $(26 - (y - 3)^2 + 36) + y^2 = 17$						
		$7 \Rightarrow \left(\sqrt{26 - (y - 3)^2} - 6\right)^2 + y^2 = 17$					
	$\Rightarrow (26 - (y - 3)^2 + 36) + y^2 = 17 \Rightarrow$						
	Therefore this solution gets M0 A0	dMU dMU AU					